cho hai số x,y biết 8^y=2^x+^8 và 3^x=9^y-^1
khi đó hai số x,y có tổng bằng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(8^y=2^{x+8}\) \(3^x=9^{y-1}\)
\(\left(2^3\right)^y=2^{x+8}\) \(3^x=\left(3^2\right)^{y-1}\)
\(2^{3y}=2^{x+8}\) \(3^x=3^{2y-2}\)
\(\Rightarrow3y=x+8\) \(\Rightarrow x=2y-2\) (2)
=> x = 3y - 8 (1)
Từ (1) và (2)
=> 3y - 8 = 2y - 2
=> 3y - 2y = -2 + 8
=> y = 6
Thay y vào phương trình (1)
=> x = 3y - 8 = 3.6 - 8 = 18 - 8 = 10
=> x + y = 10 + 6 = 16
Số x là:
\(637:\left(5+8\right)\times5=245\)
Số y là:
\(245:\dfrac{5}{8}=392\)
#DatNe