K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 12 2016

\(\frac{x^4\cdot y^4}{15}\\ \Leftrightarrow x^4\cdot y^4làB\left(15\right)\\ \Leftrightarrow\orbr{\begin{cases}x=0\\y=0\end{cases}}\)

20 tháng 12 2016

Để biểu thức trên nguyên thì \(x^4y^4\) chia hết cho 15, nghĩa là phải có một số chia hết cho 3 và một số chia hết cho 5.

Ngoài ra, nếu ĐK trên thoả mãn là đủ, vậy để biểu thức có giá trị nhỏ nhất mình cho \(x=3,y=5\).

Đáp số là \(15^3\)

20 tháng 12 2016

tìm cả x , cả y nữa mà bn

22 tháng 12 2018

Vì \(x^4\ge0\forall x;y^4\ge0\forall y\)

\(\Rightarrow P\ge0\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x^4+y^4=0\)

\(\Leftrightarrow\hept{\begin{cases}x^4=0\\y^4=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\y=0\end{cases}\Leftrightarrow}x=y=0}\)

Vậy \(P_{min}=0\Leftrightarrow x=y=0\)

22 tháng 12 2018

Bạn ơi x,y nguyên dương nhé

+) Vì y và x tỉ lệ thuận với nhau nên:

y=kxy=kx

\Rightarrow y_1=k\cdot x_1y1=kx1

hay 6=k\cdot36=k3

\Rightarrow k=2k=2

Vậy y tỉ lệ thuận với x theo hệ số tỉ lệ 2.

29 tháng 12 2017

giả sử x và y đều không chia hết cho 3 

\(\hept{\begin{cases}x^4\equiv1\left(mod3\right)\\y^4\equiv1\left(mod3\right)\end{cases}\Rightarrow x^4+y^4\equiv2\left(mod3\right)\Rightarrow\frac{x^4+y^4}{15}\notin N}\)

=> x và y đều phải chi hết cho 3 

tương tự sử dụng với mod 5, ( lũy thừa bậc 4 của 1 số luôn đồng dư với 0 hoạc 1 theo mod5 )

=> x và y đề phải chia hết cho 5 

=> x,y đều chia hết cho 15

mà số nguyên dương nhỏ nhất chia hết cho 15 là 15 => x=y=15

thay vào và tìm min nhé

24 tháng 4 2016

Để A có giá trị nguyên dương thì 5n-7 phải chia hết cho 9 và 5n-7 thuộc N

=> 5n-7 thuộc B(9)=>5n-7 thuộc{0;9;18;...}

Ta có với 5n-7=0=>5n-7=0

                                5n=7(loại)

Với 5n-7=9=>5n-7=9

                       5n=16(loại)

Với 5n-7=18=>5n-7=18

                        5n-25

                          n=5(TM)

Vậy giá trị nhỏ nhất của n là 5

9 tháng 5 2017

Ta có: (x + 2)4 \(\ge\)0 với mọi x

          |2y - 10| \(\ge\)0 với mọi y

=> (x + 2)4 + |2y - 10| \(\ge\)0

=> S = (x + 2)4 + |2y - 10| + 2017 \(\ge\)2017

Dấu "=" xảy ra <=> \(\hept{\begin{cases}\left(x+2\right)^4=0\\\left|2y-10\right|=0\end{cases}}\)<=>\(\hept{\begin{cases}x=-2\\y=5\end{cases}}\)

Vậy GTNN của S = 2017 tại x = -2 và y = 5

17 tháng 10 2017

hay ấy chi