K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 12 2016

Để phân thức (9x2-16)/(3x2-4x) được xác định =>3x2-4x khác 0

=>3x(x-4/3) khác 0 

=>x khác 0,4/3

9 tháng 12 2018

a, Để A xác định 

\(\Rightarrow\hept{\begin{cases}3x^2\ne0\\4x\ne0\end{cases}}\Rightarrow x\left(3x-4\right)\ne0\)

\(\Rightarrow x\ne0\Rightarrow3x-4\ne0\Rightarrow x\ne0\)

b Để \(B=\frac{x^2+4x+4}{2x+4}=\frac{\left(x+2\right)^2}{2x+4}\)xác định 

\(\Rightarrow\hept{\begin{cases}2x\ne0\\4\ne0\end{cases}}\Rightarrow2\left(x+2\right)\ne0\)

\(\Rightarrow x+2\ne0\Rightarrow x\ne-2\)

c,, Để \(C=\frac{2x-x^2}{x^2-4}=\frac{x\left(2-x\right)}{\left(x-2\right)\left(x+2\right)}\)

\(\Rightarrow\hept{\begin{cases}x-2\ne0\\x+2\ne0\end{cases}}\Rightarrow\hept{\begin{cases}x\ne2\\x\ne-2\end{cases}}\)

d, Để D xác định :

\(\Rightarrow\hept{\begin{cases}x^3\ne0\\8\ne0\end{cases}}\Rightarrow x^3-8\ne0\)

\(\Rightarrow x\ne2\)

2 tháng 12 2017

A.

Để phân thức A xác định <=> x - 2 # 0

<=> x #2

B. để phân thức B xác định <=> x^2 - 6x #0

<=> x(x-6) #0

<=> | x #0          <=> |x #0

       | x - 6 #0            | x # 6

a,x thuộc R

x khác \(\frac{4}{3}\)và x khác 0 vì(1)

b,\(\frac{9x^2-16}{3x^2-4x}\)

\(=\frac{\left(3x\right)^2-4^2}{x\left(3x-4\right)}\)(1)

\(=\frac{\left(3x-4\right)\left(3x+4\right)}{x\left(3x-4\right)}\)

\(=\frac{3x+4}{x}\)

27 tháng 11 2018

a) \(B=\frac{9x^2-16}{3x^2-4x}=\frac{9x^2-16}{x.\left(3x-4\right)}\)

để B xác định => x.(3x-4) khác 0 => \(\hept{\begin{cases}x\ne0\\3x\ne4\end{cases}\Rightarrow\hept{\begin{cases}x\ne0\\x\ne\frac{4}{3}\end{cases}}}\)

b) \(B=\frac{9x^2-16}{3x^2-4x}=\frac{\left(3x\right)^2-4^2}{x.\left(3x-4\right)}=\frac{\left(3x-4\right).\left(3x+4\right)}{x.\left(3x-4\right)}=\frac{3x+4}{x}\)

2 tháng 4 2020

Là ông thọ

21 tháng 12 2018

1.a)\(\frac{x^3}{x^2-4}-\frac{x}{x-2}-\frac{2}{x+2}\)

\(=\frac{x^3}{\left(x+2\right)\left(x-2\right)}-\frac{x}{x-2}-\frac{2}{x+2}\)

Để biểu thức được xác định thì:\(\left(x+2\right)\left(x-2\right)\ne0\)\(\Rightarrow x\ne\pm2\)

                                                      \(\left(x+2\right)\ne0\Rightarrow x\ne-2\)

                                                      \(\left(x-2\right)\ne0\Rightarrow x\ne2\)

                         Vậy để biểu thức xác định thì : \(x\ne\pm2\)

b) để C=0 thì ....

21 tháng 12 2018

1, c , bn Nguyễn Hữu Triết chưa lm xong 

ta có : \(/x-5/=2\)

\(\Rightarrow\orbr{\begin{cases}x-5=2\\x-5=-2\end{cases}}\Rightarrow\orbr{\begin{cases}x=7\\x=3\end{cases}}\)

thay x = 7  vào biểu thứcC

\(\Rightarrow C=\frac{4.7^2\left(2-7\right)}{\left(7-3\right)\left(2+7\right)}=\frac{-988}{36}=\frac{-247}{9}\)KL :>...

thay x = 3 vào C 

\(\Rightarrow C=\frac{4.3^2\left(2-3\right)}{\left(3-3\right)\left(3+7\right)}\)

=> ko tìm đc giá trị C tại x = 3

3 tháng 6 2021

a, \(\sqrt{x^2+12x+40}\)

\(=\sqrt{\left(x+6\right)^2+4}\)

Biểu thức trên xác định \(\Leftrightarrow\left(x+6\right)^2+4\ge0\) mà \(\left(x+6\right)^2\ge0\forall x\Rightarrow\left(x+6\right)^2+4\ge4\forall x\)

Vậy biểu thức trên xác định với mọi x

b, \(\frac{1}{\sqrt{9x^2-6x+1}}\)

\(=\frac{1}{\sqrt{\left(3x-1\right)^2}}\)

Biểu thức trên xác định \(\Leftrightarrow\hept{\begin{cases}\left(3x-1\right)^2\ge0\\\left(3x-1\right)^2\ne0\end{cases}}\)

                                        \(\Leftrightarrow\left(3x-1\right)^2\ne0\)vì (3x-1)2 luôn \(\ge\)0 với mọi x

                                        \(\Leftrightarrow3x-1\ne0\Leftrightarrow3x\ne1\Leftrightarrow x\ne\frac{1}{3}\)

Vậy biểu thức trên xác định khi và chỉ khi \(x\ne\frac{1}{3}\)

3 tháng 6 2021

c, \(\sqrt{\left(4x^2+2x+3\right)\left(3-2x\right)}\)

\(\Leftrightarrow\orbr{\begin{cases}\hept{\begin{cases}4x^2+2x+3\ge0\\3-2x\ge0\end{cases}}\\\hept{\begin{cases}4x^2+2x+3\le0\\3-2x\le0\end{cases}}\end{cases}}\)Biểu thức trên xác định \(\Leftrightarrow\)\(\hept{\begin{cases}4x^2+2x+3\ge0\\3-2x\ge0\end{cases}}\)(1)  hoặc \(\hept{\begin{cases}4x^2+2x+3\le0\\3-2x\le0\end{cases}}\)(2)

                                            mà \(4x^2+2x+3=\left(2x+\frac{1}{2}\right)^2+\frac{11}{4}\)luôn \(\ge\frac{11}{4}\)\(\forall x\)

                                       \(\Rightarrow\)(2) không thỏa mãn, (1) thỏa mãn 

Từ (1)\(\Rightarrow3-2x\ge0\)(vì \(4x^2+2x+3\)luôn \(\ge0\forall x\))

           \(\Rightarrow3\ge2x\)

            \(\Rightarrow\frac{3}{2}\ge x\)hay\(x\le\frac{3}{2}\)

Vậy biểu thức trên xác định khi và chỉ khi \(x\le\frac{3}{2}\)

d, \(\sqrt{\frac{2x^2+3x+16}{5-7x}}\)

=\(\frac{\sqrt{\left(\sqrt{2}x+\frac{3\sqrt{2}}{4}\right)^2+\frac{119}{8}}}{\sqrt{5-7x}}\)

Biểu thức trên xác định \(\Leftrightarrow\hept{\begin{cases}\left(\sqrt{2}x+\frac{3\sqrt{2}}{4}\right)^2\\5-7x>0\end{cases}+\frac{119}{8}\ge0}\)

mà \(\left(\sqrt{2}x+\frac{3\sqrt{2}}{4}\right)^2+\frac{119}{8}\ge\frac{119}{8}\forall x\)

\(\Rightarrow\)Biểu thưc trên xác định \(\Leftrightarrow5-7x>0\)\(\Leftrightarrow5>7x\Leftrightarrow\frac{5}{7}>x\)hay \(x< \frac{5}{7}\)

               

23 tháng 1 2019

15 tháng 12 2016

a/ A=\(\frac{x\left(3x-1\right)}{\left(3x-1\right)^2}=\frac{x}{3x-1}\)

A xác định khi 3x-1 #0 <=> x khác 1/3

b/ x=8 => A=\(\frac{8}{3.8-1}=\frac{8}{23}\)

c/ A\(\le0\)Khi:

+/\(\hept{\begin{cases}x\ge0\\3x-1\le0\end{cases}}< =>0\le x\le\frac{1}{3}\)

+/ \(\hept{\begin{cases}x\le0\\3x-1\ge0\end{cases}}\)Không có giá trị x phù hợp

Vậy để A<0 <=> \(0\le x\le\frac{1}{3}\)

15 tháng 12 2016

a,\(\frac{3x^2-x}{9x^2-6x+1}=\frac{x\left(3x-1\right)}{\left(3x-1\right)^2}=\frac{x}{3x-1}\)

Vậy đk xác định của phân thức là \(x\ne\frac{1}{3}\)

b, Ta thay x=8

\(\frac{x}{3x-1}=\frac{8}{3.8-1}=\frac{8}{23}\)

c, x<0

\(\Rightarrow\frac{x}{3x-1}=-1\Leftrightarrow x=0,25\)