A= 6/12+ 6/84+ 6/210+ 6/390+...+ 6/1254+ 6/1650
làm đủ các bước
giúp mk với!!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{6}{84}+\dfrac{6}{210}+\dfrac{6}{390}+...+\dfrac{6}{2100}\)
\(=\dfrac{2}{28}+\dfrac{2}{70}+\dfrac{2}{130}+...+\dfrac{2}{700}\)
\(=\dfrac{2}{4.7}+\dfrac{2}{7.10}+\dfrac{2}{10.13}+...+\dfrac{2}{25.28}\)
\(=\dfrac{2}{3}.\left(\dfrac{3}{4.7}+\dfrac{3}{7.10}+\dfrac{3}{10.13}+...+\dfrac{3}{25.28}\right)\)
\(=\dfrac{2}{3}.\left(\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{25}-\dfrac{1}{28}\right)\)
\(=\dfrac{2}{3}\left(\dfrac{1}{4}-\dfrac{1}{28}\right)\)
\(=\dfrac{1}{7}\)
+) \(A=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{10}}\)
\(\Rightarrow2A=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^9}\)
\(\Rightarrow2A-A=\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^9}\right)-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{10}}\right)\)
\(\Rightarrow A=1-\dfrac{1}{2^{10}}=\dfrac{2^{10}-1}{2^{10}}\)
Vậy \(A=\dfrac{2^{10}-1}{2^{10}}\)
+) \(F=\dfrac{1}{15}+\dfrac{1}{21}+\dfrac{1}{28}+...+\dfrac{1}{190}\)
\(\Rightarrow\dfrac{1}{2}F=\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}+...+\dfrac{1}{380}\)
\(=\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}+...+\dfrac{1}{19.20}=\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+...+\dfrac{1}{19}-\dfrac{1}{20}\)
\(=\dfrac{1}{5}-\dfrac{1}{20}=\dfrac{3}{20}\Rightarrow F=\dfrac{3}{20}:\dfrac{1}{2}=\dfrac{3}{10}\)
Vậy \(F=\dfrac{3}{10}\)
+) \(G=\dfrac{12}{84}+\dfrac{12}{210}+\dfrac{12}{390}+...+\dfrac{12}{2100}\)
\(=\dfrac{4}{28}+\dfrac{4}{70}+\dfrac{4}{130}+...+\dfrac{4}{700}=\dfrac{4}{4.7}+\dfrac{4}{7.10}+...+\dfrac{4}{25.28}\)
\(=\dfrac{4}{3}.\left(\dfrac{3}{4.7}+\dfrac{3}{7.10}+...+\dfrac{3}{25.28}\right)\)
\(=\dfrac{4}{3}.\left(\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{25}-\dfrac{1}{28}\right)\)
\(=\dfrac{4}{3}.\left(\dfrac{1}{4}-\dfrac{1}{28}\right)=\dfrac{4}{3}.\dfrac{3}{14}=\dfrac{2}{7}\)
Vậy \(G=\dfrac{2}{7}\)
\(A=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{10}}\)
\(2A=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^9}\)
\(2A-A=\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^9}\right)-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{10}}\right)\)
\(A=1-\dfrac{1}{2^{10}}=\dfrac{1024-1}{1024}=\dfrac{1023}{1024}\)
\(F=\dfrac{1}{15}+\dfrac{1}{21}+\dfrac{1}{28}+...+\dfrac{1}{190}\)
\(=\dfrac{2}{30}+\dfrac{2}{42}+\dfrac{2}{56}+...+\dfrac{2}{380}\)
\(=\dfrac{2}{5.6}+\dfrac{2}{6.7}+\dfrac{2}{7.8}+...+\dfrac{2}{19.20}\)
\(=2\left(\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}+...+\dfrac{1}{19.20}\right)\)
\(=2\left(\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+...+\dfrac{1}{19}-\dfrac{1}{20}\right)\)
\(=2\left(\dfrac{1}{5}-\dfrac{1}{20}\right)=2.\dfrac{3}{20}=\dfrac{3}{10}\)
\(G=\dfrac{12}{84}+\dfrac{12}{210}+\dfrac{12}{390}+...+\dfrac{12}{2100}\)
\(=\dfrac{4}{28}+\dfrac{4}{70}+\dfrac{4}{130}+...+\dfrac{4}{700}\)
\(=\dfrac{4}{4.7}+\dfrac{4}{7.10}+\dfrac{4}{10.13}+...+\dfrac{4}{25.28}\)
\(=\dfrac{4}{3}\left(\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{13}+...+\dfrac{1}{25}-\dfrac{1}{28}\right)\)
\(=\dfrac{4}{3}\left(\dfrac{1}{4}-\dfrac{1}{28}\right)\)
\(=\dfrac{4}{3}.\dfrac{3}{14}=\dfrac{2}{7}\)
Đổi 100dam = 10hm 6dm = 60cm
84hm : 10hm = 8 ( dư 4 )hm
5cm 7mm x 60cm 2mm = 301cm ( dư 4mm ) bạn nhé
10x2 + 17x - 6
\(=10x^2+20x-3x-6\)
\(=10x\left(x+2\right)-3\left(x+2\right)=\left(x+2\right)\left(10x-3\right)\)
- 10x2 - 17x +6
\(=-10x^2-20x+3x+6\)
\(=-10x\left(x+2\right)+3\left(x+2\right)=\left(x+2\right)\left(-10x+3\right)\)
- 10x2 + 28x + 6
\(=-10x^2+30x-2x+6\)
\(=-10x\left(x+3\right)-2\left(x+3\right)=-\left(x+3\right)\left(10x+2\right)\)
10x2 - 28x -6
\(=10x^2-30x+2x-6\)
\(=10x\left(x-3\right)+2\left(x-3\right)=\left(x-3\right)\left(10x+2\right)\)
Ta có : A = 1 + 6 + 6^2 + .... + 6^9 .
= 1 + 6 . ( 1 + 6 + ..... + 6^8 ) .
Do đó A chia cho 6 dư 1
a) \(\frac{x}{9}=\frac{8}{6}\Rightarrow x=\frac{8}{6}.9=\frac{4}{3}.9=12\)
b) \(\frac{12}{x}=\frac{6}{7}\Rightarrow x=12:\frac{6}{7}=12.\frac{7}{6}=14\)
c) \(5\frac{2}{3}:x=3\frac{2}{3}-2\frac{1}{2}\Rightarrow\frac{17}{3}:x=\left(3-2\right)+\left(\frac{2}{3}-\frac{1}{2}\right)\)
\(\Rightarrow\frac{17}{3}:x=1+\frac{1}{6}=\frac{7}{6}\Rightarrow x=\frac{17}{3}:\frac{7}{6}=\frac{17}{3}.\frac{6}{7}=\frac{34}{7}\)
\(\frac{4^6.9^5+6^9.120}{8^4.3^{12}-6^{11}}\)
\(\Leftrightarrow\frac{\left(2^2\right)^6.\left(3^2\right)^5+\left(2.3\right)^9.2^3.3.5}{\left(2^3\right)^4.3^{12}-\left(2.3\right)^{11}}\)
\(\Leftrightarrow\frac{2^{12}.3^{10}+2^9.3^9.2^3.3.5}{\left(2^3\right)^4.3^{12}-\left(2.3\right)^{11}}\)
\(\Leftrightarrow\frac{2^{12}.3^{10}+2^9.3^9.2^3.3.5}{2^{13}.3^{13}-2^{11}.3^{11}}\)
\(\Leftrightarrow\frac{2^{12}.3^{10}+2^{12}.3^{10}.5}{2^{12}.2^{12}-2^{11}.2^{11}}\)
\(\Leftrightarrow\frac{2^{12}.3^{10}.\left(1+5\right)}{6^{12}-6^{11}}\)
\(\Leftrightarrow\frac{2^{12}.3^{10}.6}{6^{11}.\left(6-1\right)}\)
\(\Leftrightarrow\frac{2^{12}.3^{10}.2.3}{6^{11}.\left(6-1\right)}\)
\(\Leftrightarrow\frac{2^{13}.3^{11}}{6^{11}.5}\)
\(\Leftrightarrow\frac{2^{11}.3^{11}.2^2}{6^{11}.5}\)
\(\Leftrightarrow\frac{6^{11}.4}{6^{11}.5}\Leftrightarrow\frac{4}{5}\)
helppp, ai lm đúng mk cho 1coin
helppp, ai lm đúng mk cho 1coin