K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 12 2016

Đặt: \(\frac{x-y}{z}+\frac{y-z}{x}+\frac{z-x}{y}=M\)

Ta có: 

\(M\cdot\frac{z}{x-y}=1+\frac{z}{x-y}\cdot\left(\frac{y-z}{x}+\frac{z-x}{y}\right)=1+\frac{z}{x-y}\cdot\frac{y^2-yz+xz-x^2}{xy}\)

\(=1+\frac{z}{x-y}\cdot\frac{\left(x-y\right)\left(z-x-y\right)}{xy}=1+\frac{2z^2}{xyz}=1+\frac{2z^3}{xyz}\)            (1)

Tương tự ta cũng có:

\(M\cdot\frac{x}{y-z}=1+\frac{2x^3}{xyz}\)              (2)

\(M\cdot\frac{y}{z-x}=1+\frac{2y^3}{xyz}\)            (3)

Từ (1);(2);(3) suy ra

\(M\cdot\left(\frac{z}{x-y}+\frac{x}{y-z}+\frac{y}{z-x}\right)=3+\frac{2\left(x^3+y^3+z^3\right)}{xyz}\)

Mà \(x+y+z=0\Rightarrow x^3+y^3+z^3=3xyz\)

Nên:

\(M\cdot\left(\frac{z}{x-y}+\frac{x}{y-z}+\frac{y}{z-x}\right)=3+\frac{2\cdot3xyz}{xyz}=9\)

=>đpcm

25 tháng 6 2015

a) \(aaaa:x=a\Rightarrow aaaa:a=x\Rightarrow x=1111\)

b) \(x\times a=a0a0a0\Rightarrow x=a0a0a0:a\Rightarrow x=101010\)

19 tháng 10 2014

nếu là số tự nhiên thì ko có giá trị x nào thỏa mãn

19 tháng 10 2014

\(\in\)\(\varnothing\)

26 tháng 7 2015

(24+16) :5=8

               ĐS: 8

7 tháng 7 2015

Bạn Nguyễn Đoan Hạnh cho mình bổ sung nhé 

Ư(9)={+-1;+-3;+-9}

Nếu x+1=-1 => x=-2

Nếu x+1=-3 => x = -4

Nếu X+1=-9 => x = -10

11 tháng 12 2017

x+10 la boi cua x+1 

suy ra (x+1)+9 la boi cua x+1

suy ra 9 la boi cua x+1

U(9)={1;3;9}

Neu x+1=1 thi x=0

Neu x+1=3 thi x=2

Neu x+1=9 thi x=8

Vay x thuoc {0;2;8}

DD
17 tháng 10 2021

\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có: 

\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{x-1-2\left(y-2\right)+3\left(z-3\right)}{2-2.3+3.4}=\frac{x-2y+3z-6}{8}=1\)

\(\Leftrightarrow\hept{\begin{cases}x-1=2\\y-2=3\\z-3=4\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\\y=5\\z=7\end{cases}}\)

20 tháng 12 2016

25

19 tháng 2 2017

a, \(\left|2x+1\right|=5\Rightarrow2x+1\in\left\{5;-5\right\}\)

+) Nếu :\(2x+1=5\Rightarrow2x=4\Rightarrow x=4\div2=2\)

+) Nếu : \(2x+1=-5\Rightarrow2x=-6\Rightarrow x=-6\div2=-3\)

Vậy \(x\in\left\{2;-3\right\}\)

b, \(\left|x-4\right|=\left|2-x\right|\)

\(\Rightarrow\left[\begin{matrix}x-4=2-x\\x-4=-\left(2-x\right)\end{matrix}\right.\)

+) Nếu : x - 4 = 2 - x

\(\Rightarrow x+x=2+4\Rightarrow2x=6\Rightarrow x=3\)

+) Nếu : x - 4 = - ( 2 - x )

\(\Rightarrow x-4=-2+x\Rightarrow x-x=-2+4\Rightarrow0=2\) ( loại )

Vậy x = 3 thỏa mãn đề bài

c, \(\left|x-5\right|=2-x\Rightarrow\left|x-5\right|+x=2\)

+) Nếu : \(x< 5\Rightarrow x-5< 5-5\Rightarrow x-5< 0\Rightarrow\left|x-5\right|=-x+5\)

Thay vào đề , ta có :

\(-x+5+x=2\Rightarrow-x+x+5=2\Rightarrow5=2\) ( loại )

+) Nếu : \(x\ge5\Rightarrow x-5\ge5-5\Rightarrow x-5\ge0\Rightarrow\left|x-5\right|=x-5\)

Thay vào đề , ta có :

\(\left(x-5\right)-x=2\Rightarrow x-5-x=2\)

\(\Rightarrow x-x-5=2\Rightarrow-5=2\) ( loại )

Vậy \(x\in\varnothing\)