K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 12 2016

= 2^2011+2^2012+2^2013+2^2014+2^2015+2^2016

A=2^2011(1+2+2^2+2^3+2^3+2^4+2^5)

A=2^2001.63

A= 2^2001.21.3

=> A chia hết cho 21

8 tháng 12 2019

A = 22011 + 22012 + 22013 + 22014 + 22015 + 22016

   = (22011 + 22012) + (22013 + 22014) + (22015 + 22016)

   = 22011(2 + 1) + 22013(2 + 1) + 22015(2 + 1)

   = 3.22011 + 3.22011.22 + 3.22011.24

   = 3.22011.(1 + 22 + 24)

   =  3.22011.21 \(⋮\)21

=> A \(⋮\) 21

Ta có : A = 22011 + 22012 + 22013 + 22014 + 22015 + 22016

   = (22011 + 22012) + (22013 + 22014) + (22015 + 22016)

   = 22011(2 + 1) + 22013(2 + 1) + 22015(2 + 1)

   = 3.22011 + 3.22011.22 + 3.22011.24

   = 3.22011.(1 + 22 + 24)

   =  3.22011.21 \(⋮\)21

=> A \(⋮\) 21 (đpcm)

17 tháng 12 2018

Mik sắp làm xong thì bấm nhầm làm mất bài, bây h làm lại thì hơi mất thời gian. Mik hướng dẫn bn làm nhé.

Chứng minh nó chia hết cho 3; cho 7 rồi CM đc nó chia hết cho 21.

Đối vs A chia hết cho 3, bn ghép hai số lại vs nhau và Cm đc. Còn đối vs A chia hết cho 7, bn ghép 3 số lại làm 1 nhóm là Cm đc. Nếu ko biết thì cố nghĩ đi nhé. Chúc bạn học tốt.

27 tháng 11 2016

A=\(2^{2011}+2^{2012}+2^{2013}+2^{2014}+2^{2015}+2^{2016}\)

A=\(\left(2^{2011}+2^{2012}\right)+\left(2^{2013}+2^{2014}\right)+\left(2^{2015}+2^{2016}\right)\)

A=\(2^{2011}\left(1+2\right)+2^{2013}\left(1+2\right)+2^{2015}\left(1+2\right)\)

A=\(2^{2011}\cdot3+2^{2013}\cdot3+2^{2015}\cdot3\)

A=\(3\left(2^{2011}+2^{2013}+2^{2015}\right)⋮3\)(1)

A=\(2^{2011}+2^{2012}+2^{2013}+2^{2014}+2^{2015}+2^{2016}\)

A=\(\left(2^{2011}+2^{2012}+2^{2013}\right)+\left(2^{2014}+2^{2015}+2^{2016}\right)\)

A=\(2^{2011}\left(1+2+2^2\right)+2^{2014}\left(1+2+2^2\right)\)

A=\(2^{2011}\cdot7+2^{2014}\cdot7\)

A=\(7\cdot\left(2^{2011}+2^{2014}\right)⋮7\)(2)

Từ (1) và (2)\(\Rightarrow A⋮3,7\)

Mà ƯCLN(3,7)=1

\(\Rightarrow A⋮3\cdot7=21\)

 

16 tháng 12 2015

A=22011+22012+22013+22014+22015+22016

A=22011.1+22011.2+22011.22+22011.23+22011.24+22011.25

A=22011.(1+2+22+23+24+25)

A=22011.(1+2+4+8+16+32)

A=22011.63

A=22011.3.21    chia hết cho 21

26 tháng 12 2016

20115524+2105+26589+2356/8968-5689

19 tháng 12 2018

\(A=2^{2011}+2^{2012}+2^{2013}+2^{2014}+2^{2015}+2^{2016}\)

\(A=2^{2011}.\left(1+2+2^2+2^3+2^4+2^5\right)\)

\(A=2^{2011}.63=2^{2011}.3.21⋮21\)

24 tháng 4 2017

\(A=2^{2011}+2^{2012}+2^{2013}+2^{2014}+2^{2015}+2^{2016}\)

\(=2^{2011}\cdot\left(1+2+2^2+2^3+2^4+2^5\right)\)

\(=2^{2011}\cdot63⋮21\)(vì \(63⋮21\))

Vậy \(A⋮21\left(đpcm\right)\)

24 tháng 4 2017

thank you verymuch

21 tháng 9 2017

Nguyen Lam Anh

\(A=2^0+2^1+.....+2^{2010}+2^{2010}\)

\(\Rightarrow2A=2^1+2^2+2^3+.....+2^{2012}\)

\(\Rightarrow2A-A=A=2^{2012}-2^0=2^{2012}-1\)

Mà \(B=2^{2012}\)

Do đó: \(A-B="2^{2012}-1"-2^{2012}=1\)

Vậy A và B là hai số tự nhiên liên tiếp