Tìm x:
x/2+(-5/12)=8
Mng giúp em vs ạ>Em cảm ơn !
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(x-5\right)-\frac{1}{3}=\frac{2}{5}\)
\(\Rightarrow\left(x-5\right)=\frac{2}{5}+\frac{1}{3}\)
\(\Rightarrow\left(x-5\right)=\frac{11}{15}\)
\(\Rightarrow x-5=\frac{11}{15}\)
\(\Rightarrow x=\frac{11}{15}+5\)
\(\Rightarrow x=\frac{86}{15}\)
b) \(\frac{2}{3}\cdot x-\frac{3}{2}\cdot x=\frac{5}{12}\)
\(\Rightarrow x\cdot\left(\frac{2}{3}-\frac{3}{2}\right)=\frac{5}{12}\)
\(\Rightarrow x\cdot\left(-\frac{5}{6}\right)=\frac{5}{12}\)
\(\Rightarrow x=\frac{5}{12}:\left(-\frac{5}{6}\right)\)
\(\Rightarrow x=-\frac{1}{2}\)
c) \(-\frac{2}{3}\cdot x+\frac{1}{5}=\frac{3}{10}\)
\(\Rightarrow-\frac{2}{3}\cdot x=\frac{3}{10}-\frac{1}{5}\)
\(\Rightarrow-\frac{2}{3}\cdot x=\frac{1}{10}\)
\(\Rightarrow x=\frac{1}{10}:\left(-\frac{2}{3}\right)\)
\(\Rightarrow x=-\frac{3}{20}\)
d) \(4-\left(\frac{1}{2}\cdot x+\frac{3}{4}\right)=-\frac{1}{5}\)
\(\Rightarrow\left(\frac{1}{2}\cdot x+\frac{3}{4}\right)=4-\left(-\frac{1}{5}\right)\)
\(\Rightarrow\)\(\frac{1}{2}\cdot x+\frac{3}{4}=\frac{21}{5}\)
\(\Rightarrow\)\(\frac{1}{2}\cdot x=\frac{21}{5}-\frac{3}{4}\)
\(\Rightarrow\)\(\frac{1}{2}\cdot x=\frac{69}{20}\)
\(\Rightarrow\)\(x=\frac{69}{20}:\frac{1}{2}\)
\(\Rightarrow\)\(x=\frac{69}{10}\)
a: =>(3x+1)(3x-1)-(3x+1)(2x-3)=0
=>(3x+1)(3x-1-2x+3)=0
=>(3x+1)(x+2)=0
=>x=-1/3 hoặc x=-2
b: =>(3x+1)(6x+2)-(3x+1)(x-2)=0
=>(3x+1)(6x+2-x+2)=0
=>(3x+1)(5x+4)=0
=>x=-1/3 hoặc x=-4/5
1.
\(\dfrac{1-cosx+cos2x}{sin2x-sinx}=\dfrac{1-cosx+2cos^2x-1}{2sinx.cosx-sinx}\)
\(=\dfrac{cosx\left(2cosx-1\right)}{sinx\left(2cosx-1\right)}=\dfrac{cosx}{sinx}=cotx\)
2.
\(\dfrac{1+tan^4x}{tan^2x+cot^2x}=\dfrac{1+tan^4x}{tan^2x+\dfrac{1}{tan^2x}}=\dfrac{1+tan^4x}{\dfrac{tan^4x+1}{tan^2x}}=tan^2x\)
3.
\(sin^4x+cos^4x=sin^4x+cos^4x+2sin^2x.cos^2x-2sin^2x.cos^2x\)
\(=\left(sin^2x+cos^2x\right)^2-2sin^2x.cos^2x\)
\(=1-2sin^2x.cos^2x\)
4.
Áp dụng câu 3:
\(sin^4x+cos^4x=1-2sin^2x.cos^2x\)
\(=1-\dfrac{1}{2}\left(2sinx.cosx\right)^2\)
\(=1-\dfrac{1}{2}sin^22x\)
5.
\(sin\left(x+y\right)sin\left(x-y\right)=\dfrac{1}{2}cos\left[\left(x-y\right)-\left(x+y\right)\right]-\dfrac{1}{2}cos\left[\left(x-y\right)+\left(x+y\right)\right]\)
\(=\dfrac{1}{2}\left(cos2y-cos2x\right)=\dfrac{1}{2}\left(1-2sin^2y\right)-\dfrac{1}{2}\left(1-2sin^2x\right)\)
\(=sin^2x-sin^2y\)
6.
\(tanx+cotx=\dfrac{sinx}{cosx}+\dfrac{cosx}{sinx}=\dfrac{sin^2x+cos^2x}{sinx.cosx}\)
\(=\dfrac{1}{sinx.cosx}=\dfrac{2}{2sinx.cosx}=\dfrac{2}{sin2x}\)
Ta có: \(\frac{x+2}{y+10}\)\(=\)\(\frac{1}{5}\)\(\Rightarrow\)\(5\left(x+2\right)=y+10\)(1)
\(y-3x=2\)\(\Rightarrow\)\(y+2=3x\) (2)
Thay (2) vào (1) ta có:
\(5\left(x+2\right)=\left(y+2\right)+8\)
\(5x+10=3x+8\)
\(5x-3x=8-10\)
\(2x=-2\)
\(x=-2:2\)
\(x=-1\)
Vậy: x=-1
Chúc bạn làm bài tốt!
Ta có : (-1)+3+(-5)+7+.....+[-(x-2)+x]=600
[(-1)+3]+[(-5)+7]+.....+[-(x-2)]+x=600
2 + 2 + .... + 2 = 600
2 . (1+1+ ...... + 1 ) = 600
\(\Leftrightarrow\) 1 + 1 + .... + 1 = 600 : 2
\(\Leftrightarrow\)1 + 1 + ..... + 1 = 300
Số dấu [] là : (x - 3 ) : 4 + 1
\(\Rightarrow\)(x - 3 ) : 4 + 1 = 300
\(\Rightarrow\)(x-3) : 4 = 299
\(\Rightarrow\)x - 3 = 299 x 4
\(\Rightarrow\)x - 3 = 1196
\(\Rightarrow\)x = 1196 + 3
\(\Rightarrow\)x = 1199
Vậy x = 1199.
# HOK TỐT #
a: \(B=\left(\dfrac{x}{\left(x-2\right)\left(x+2\right)}-\dfrac{2}{x-2}+\dfrac{1}{x+2}\right):\left(x-2+\dfrac{10-x^2}{x+2}\right)\)
\(=\dfrac{x-2x-4+x-2}{\left(x-2\right)\left(x+2\right)}:\dfrac{x^2-4+10-x^2}{x+2}\)
\(=\dfrac{-6}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{x+2}{6}=\dfrac{-1}{x-2}\)
b: Khi x=1/2 thì \(B=\dfrac{-1}{\dfrac{1}{2}-2}=\dfrac{2}{3}\)
Khi x=-1/2 thì B=2/5
c: Để B nguyên thì \(x-2\in\left\{1;-1\right\}\)
hay \(x\in\left\{3;1\right\}\)
a, đk : x khác -2 ; 2
\(B=\left(\dfrac{x-2\left(x+2\right)+x-2}{\left(x-2\right)\left(x+2\right)}\right):\left(\dfrac{x^2-4+10-x^2}{x+2}\right)\)
\(=\dfrac{-6}{\left(x-2\right)\left(x+2\right)}:\dfrac{6}{x+2}=\dfrac{1}{2-x}\)
b, Ta có \(\left|x\right|=\dfrac{1}{2}\Leftrightarrow x=\dfrac{1}{2};x=-\dfrac{1}{2}\)
Với x = 1/2 ta được \(B=\dfrac{1}{2-\dfrac{1}{2}}=\dfrac{2}{3}\)
Với x = -1/2 ta được \(B=\dfrac{1}{2+\dfrac{1}{2}}=\dfrac{2}{5}\)
c, \(\dfrac{1}{2-x}\Rightarrow2-x\inƯ\left(1\right)=\left\{\pm1\right\}\)
2-x | 1 | -1 |
x | 1 | 3 |
`x/2+ (-5/12)=8`
`x/2 = 8 - (-5/12)`
`x/2 = 8 +5/12`
`x/2 = 96/12 + 5/12`
`x/2= 101/12`
`x=101/12 xx 2`
`x=101/6`
Vậy `x=101/6`
\(\dfrac{x}{2}+\left(-\dfrac{5}{12}\right)=8\)
\(\Rightarrow\dfrac{x}{2}=8+\dfrac{5}{12}\)
\(\Rightarrow\dfrac{x}{2}=\dfrac{101}{12}\)
\(\Rightarrow x=\dfrac{101\times2}{12}\)
\(\Rightarrow x=\dfrac{101}{6}\)