K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 4 2020

Ta có : B = 2x+1/x-3 = (2x-6)+7/x-3 = 2+ 7/x-3 

Để B nhận giá trị nguyên thì x-3 thuộc Ư(7) = (+-1;+-7)

suy ra : x-3=-1 => x=2                               x-3=1 => x=4

             x-3=-7 => x=-4                               x-3=7 => x=10

Vậy x =(-4;2;4;10) thì B nhận giá trị nguyên

7 tháng 4 2023

ĐKXĐ : \(x\ne2\)

Ta có HĐT sau (a - b)(a + b) = a2 - ab + ab - b2 = a2 - b2 

Áp dụng vào bài toán ta có:

 x4 + 3 = (x4 - 16) + 19

= [(x2)2 - 42] + 19

= (x2 - 4)(x2 + 4) + 19

= (x - 2)(x + 2)(x2 + 4) + 19

Từ đó \(A=\dfrac{x^2+3}{x-2}=\dfrac{\left(x-2\right).\left(x+2\right).\left(x^2+4\right)+19}{x-2}\)

\(=\left(x+2\right).\left(x^2+4\right)+\dfrac{19}{x-2}\)

Do \(x\inℤ\) nên \(A\inℤ\Leftrightarrow19⋮x-2\)

\(\Leftrightarrow x-2\inƯ\left(19\right)=\left\{1;-1;19;-19\right\}\)

hay \(x\in\left\{3;1;21;-17\right\}\)

Để A là số nguyên nhỏ nhất thì x+3=-1

hay x=-4

24 tháng 2 2022

làm thế nào có đc -1 v?

Ta có: \(P=\dfrac{4\sqrt{x}+3}{x+\sqrt{x}}+\dfrac{\sqrt{x}}{\sqrt{x}+1}\)

\(=\dfrac{4\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}+1\right)}+\dfrac{x}{\sqrt{x}\left(\sqrt{x}+1\right)}\)

\(=\dfrac{x+4\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}+1\right)}\)

\(=\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}\)

\(=\dfrac{\sqrt{x}+3}{\sqrt{x}}\)

Để P nguyên thì \(\sqrt{x}+3⋮\sqrt{x}\)

mà \(\sqrt{x}⋮\sqrt{x}\)

nên \(3⋮\sqrt{x}\)

\(\Leftrightarrow\sqrt{x}\inƯ\left(3\right)\)

\(\Leftrightarrow\sqrt{x}\in\left\{1;-1;3;-3\right\}\)

mà \(\sqrt{x}>0\forall x\) thỏa mãn ĐKXĐ

nên \(\sqrt{x}\in\left\{1;3\right\}\)

\(\Leftrightarrow x\in\left\{1;9\right\}\)

Kết hợp ĐKXĐ, ta được: \(x\in\left\{1;9\right\}\)

Vậy: Để P nguyên thì \(x\in\left\{1;9\right\}\)

a: Thay x=-4 vào B, ta được:

\(B=\dfrac{-4+3}{-4}=\dfrac{-1}{-4}=\dfrac{1}{4}\)

b: \(P=A\cdot B=\dfrac{x^2-3x+2x-9+3x+9}{\left(x-3\right)\left(x+3\right)}\cdot\dfrac{x+3}{x}\)

\(=\dfrac{x^2+2x}{\left(x-3\right)}\cdot\dfrac{1}{x}=\dfrac{x+2}{x-3}\)

c: Để P nguyên thì \(x-3\in\left\{1;-1;5;-5\right\}\)

hay \(x\in\left\{4;2;8;-2\right\}\)

6 tháng 1 2022

cảm on tiên sinh

 

29 tháng 12 2016

a) x khác 2

b) với x<2

c) \(A=\frac{x\left(x-2\right)+2\left(x-2\right)+7}{x-2}=x+2+\frac{7}{x-2}\)

x-2=(-7,-1,1,7)

x=(-5,1,3,9)

29 tháng 12 2016

a) đk kiện xác định là mẫu khác 0

=> x-2 khác o=> x khác 2

b)

tử số luôn dương mọi x

vậy để A âm thì mẫu số phải (-)

=> x-2<0=> x<2 

c)thêm bớt sao cho tử là các số hạng chia hết cho mẫu

cụ thể

x^2-2x+2x-4+4+3

ghép

x(x-2)+2(x-2)+7 

như vậy chỉ còn mỗi số 7 không chia hết cho x-2

vậy x-2 là ước của 7=(+-1,+-7) ok

13 tháng 11 2023

help

 

13 tháng 11 2023

1 - 2x = -(2x - 1) 

= -(2x + 6 - 7)

= -(2x + 6) + 7

= -2(x + 3) + 7

Để B nguyên thì (1 - 2x) ⋮ (x + 3)

⇒ 7 ⋮ (x + 3)

⇒ x + 3 ∈ Ư(7) = {-7; -1; 1; 7}

⇒ x ∈ {-10; -4; -2; 4}

28 tháng 3 2020

a) \(\left(\frac{x+3}{x-2}+\frac{x+2}{3-x}+\frac{x+2}{x^2-5x+6}\right):\left(\frac{1-x}{x+1}\right)\)

\(\left(\frac{x+3}{x-2}-\frac{x+2}{x-3}+\frac{x+2}{x^2-2x-3x+6}\right):\left(\frac{1-x}{x+1}\right)\)

\(\left(\frac{\left(x+3\right)\left(x-3\right)}{\left(x-2\right)\left(x-3\right)}-\frac{\left(x+2\right)\left(x-2\right)}{\left(x-2\right)\left(x-3\right)}+\frac{x+2}{\left(x-2\right)\left(x-3\right)}\right):\left(\frac{1-x}{x+1}\right)\)

\(\left(\frac{x^2-9-x^2+4+x+2}{\left(x-2\right)\left(x-3\right)}\right).\frac{x+1}{1-x}\)

=\(\frac{-3+x}{\left(x-2\right)\left(x-3\right)}.\frac{x+1}{1-x}\)

=\(\frac{1}{\left(x-2\right)}.\frac{x+1}{1-x}\)

=\(\frac{x+1}{\left(x-2\right)\left(1-x\right)}\)

b) Để A >1 \(\Leftrightarrow\frac{x+1}{\left(x-2\right)\left(1-x\right)}>1\)

\(\Leftrightarrow\frac{-\left(1-x\right)\left(3-x\right)}{\left(x-2\right)\left(1-x\right)}\)

\(\Leftrightarrow\frac{x-3}{x-2}>0\)

\(\Rightarrow\orbr{\begin{cases}x-3\ge0\\x-2>0\end{cases}\Leftrightarrow\orbr{\begin{cases}x\ge3\\x>2\end{cases}\Leftrightarrow}x\ge3}\)

\(\Rightarrow\orbr{\begin{cases}x-3< 0\\x-2< 0\end{cases}\Leftrightarrow\orbr{\begin{cases}x< 3\\x< 2\end{cases}\Leftrightarrow}x< 2}\)

Vậy ...