\(\sqrt{7+\sqrt{2x}}\) = 3 +\(\sqrt{5}\)
Giải ptrinh
Giúp mik vớiii
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\Leftrightarrow\sqrt{6}\left(x+1\right)=5\sqrt{6}\)
=>x+1=5
=>x=4
b: =>x^2/10=1,1
=>x^2=11
=>x=căn 11 hoặc x=-căn 11
c: =>(4x+3)/(x+1)=9 và (4x+3)/(x+1)>=0
=>4x+3=9x+9
=>-5x=6
=>x=-6/5
d: =>(2x-3)/(x-1)=4 và x-1>0 và 2x-3>=0
=>2x-3=4x-4 và x>=3/2
=->-2x=-1 và x>=3/2
=>x=1/2 và x>=3/2
=>Ko có x thỏa mãn
e: Đặt căn x=a(a>=0)
PT sẽ là a^2-a-5=0
=>\(\left[{}\begin{matrix}a=\dfrac{1+\sqrt{21}}{2}\left(nhận\right)\\a=\dfrac{1-\sqrt{21}}{2}\left(loại\right)\end{matrix}\right.\)
=>x=(1+căn 21)^2/4=(11+căn 21)/2
ĐKXĐ: \(-\frac{2}{3}\le x\le3\)
\(\Leftrightarrow\sqrt{6x+4}\le\sqrt{3-x}+\sqrt{2x+5}\)
Hai vế không âm, bình phương 2 vế:
\(6x+4\le3-x+2x+5+2\sqrt{\left(3-x\right)\left(2x+5\right)}\)
\(\Leftrightarrow5x-4\le2\sqrt{\left(3-x\right)\left(2x+5\right)}\)
- Nếu \(5x-4\le0\Leftrightarrow\frac{-2}{3}\le x\le\frac{4}{5}\) (1) \(\Rightarrow\left\{{}\begin{matrix}VT\le0\\VP\ge0\end{matrix}\right.\) \(\Rightarrow BPT\) luôn đúng
- Nếu \(5x-4>0\Rightarrow\frac{4}{5}< x\le3\) (2) hai vế đều ko âm, bình phương:
\(\left(5x-4\right)^2\le4\left(3-x\right)\left(2x+5\right)\)
\(\Leftrightarrow3x^2-4x-4\le0\)
\(\Rightarrow\frac{-2}{3}\le x\le2\) (3)
Kết hợp (2), (3) \(\Rightarrow\frac{4}{5}\le x\le2\) (4)
Kết hợp (1), (4) ta được nghiệm của BPT: \(-\frac{2}{3}\le x\le2\)
\(\Leftrightarrow2x+3\sqrt[3]{x^2-1}\left(\sqrt[3]{x-1}+\sqrt[3]{x+1}\right)=2x^3\)
\(\Rightarrow2x+3\sqrt[3]{x^2-1}.x\sqrt[3]{2}=2x^3\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\2+3\sqrt[3]{2\left(x^2-1\right)}=2x^2\left(1\right)\end{matrix}\right.\)
Xét (1):
Đặt \(\sqrt[3]{2x^2-2}=t\Rightarrow2x^2=t^3+2\)
\(\Rightarrow2+3t=t^3+2\)
\(\Leftrightarrow t\left(t^2-3\right)=0\)
\(\Leftrightarrow...\)
Đặt: \(B=\sqrt{7+\sqrt{5}}+\sqrt{7-\sqrt{5}}\)
=> \(B^2=7+\sqrt{5}+7-\sqrt{5}+2\sqrt{\left(7+\sqrt{5}\right)\left(7-\sqrt{5}\right)}\)
=> \(B^2=14+2\sqrt{49-5}\)
=> \(B^2=14+2\sqrt{44}\)
=> \(A=\frac{\sqrt{14+4\sqrt{11}}}{7+2\sqrt{11}}-\sqrt{\left(\sqrt{2}-1\right)^2}\)
=> \(A=\sqrt{\frac{2}{7+2\sqrt{11}}}-\left(\sqrt{2}-1\right)\)
=> \(A=\sqrt{\frac{2}{7+2\sqrt{11}}}-\sqrt{2}+1\)
ĐỀ BÀI CHẮC SAI RỒI PHẢI DƯỚI MẪU PHẢI LÀ \(\sqrt{7+2\sqrt{11}}\) THÌ LÚC ĐÓ BIỂU THỨC A RA ĐẸP HƠN !!!!
NẾU SỬA ĐỀ BÀI NHƯ TRÊN:
=> \(A=\frac{\sqrt{2}.\sqrt{7+2\sqrt{11}}}{\sqrt{7+2\sqrt{11}}}-\left(\sqrt{2}-1\right)\)
=> \(A=\sqrt{2}-\sqrt{2}+1\)
=> \(A=1\)
ĐÓ BÂY GIỜ RA A = 1 RẤT ĐẸP
a) \(\sqrt{7+\sqrt{2x}=3+\sqrt{5}}\) (x≥0) Đặt \(\sqrt{2x}\) = a ( a>0 )
Khi đó pt :
<=> 7+a =3 + \(\sqrt{5}\)
<=> 4+a = \(\sqrt{5}\)
<=> (4+a)\(^2\) = 5
<=> 16 + 8a + a\(^2\) = 5
<=>a\(^2\) + 8a+ 11 = 0
<=> a = -4 + \(\sqrt{5}\) (Loại) và a = -4-\(\sqrt{5}\)(Loại)
Vậy Pt vô nghiệm.
b) \(\sqrt{3x^2-4x}\) = 2x-3
<=> 3x\(^2\)- 4x = 4x\(^2\)-12x + 9
<=> x\(^2\)-8x+9 = 0
<=> x=1 , x=9
Vậy S={1;9}
c\(\dfrac{\left(7-x\right)\sqrt{7-x}+\left(x-5\right)\sqrt{x-5}}{\sqrt{7-x}+\sqrt{x-5}}\) = 2
<=> \(\dfrac{\left(\sqrt{7-x}\right)^3+\left(\sqrt{x-5}\right)^3}{\sqrt{7-x}+\sqrt{x-5}}=2\)
<=> \(\dfrac{\left(\sqrt{7-x}+\sqrt{x-5}\right)\left(7-x-\sqrt{\left(7-x\right)\left(x-5\right)}+x-5\right)}{\sqrt{7-x}+\sqrt{x-5}}=2\)
<=> \(\sqrt{\left(7-x\right)\left(x-5\right)}=0\)
<=> x=7,x=5
Vậy x=5 hoặc x=7
Lời giải:
$\sqrt{7+\sqrt{2x}}=3+\sqrt{5}$
$7+\sqrt{2x}=(3+\sqrt{5})^2=14+6\sqrt{5}$
$\sqrt{2x}=7+6\sqrt{5}$
$2x=(7+6\sqrt{5})^2=229+84\sqrt{5}$
$x=114,5+42\sqrt{5}$