Giải và biểu diễn tập nghiệm bpt sau trên trục số : \(\frac{2x+1}{4}-\frac{3x-2}{2}\ge\frac{1}{4}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{2-x}{3}< \frac{3-2x}{5}+\frac{1}{3}\)
\(\Leftrightarrow5\left(2-x\right)< 3\left(3-2x\right)+5\)
\(\Leftrightarrow10-5x< 9-6x+5\)
\(\Leftrightarrow10-5x< -6x+14\)
\(\Leftrightarrow x< 4\)
Vậy bất phương trình có tập nghiệm là: S ={x| x < 4}
#Học tốt!
\(\frac{x+4}{5}+\frac{3x+2}{10}< \frac{x-1}{3}\)
\(\Leftrightarrow\frac{6\left(x+4\right)}{30}+\frac{3\left(3x+2\right)}{30}< \frac{10\left(x-1\right)}{30}\)
\(\Leftrightarrow6x+24+9x+6< 10x-10\)
\(\Leftrightarrow5x+40< 0\)
\(\Leftrightarrow x< -8\)
Tự biểu diễn nha bạn
\(\frac{x+4}{5}+\frac{3x+2}{10}< \frac{x-1}{3}\)
\(\Rightarrow\frac{6\left(x+4\right)}{30}+\frac{3\left(3x+2\right)}{30}< \frac{10\left(x-1\right)}{30}\)
\(\Rightarrow6x+24+9x+6< 10x-10\)
\(5x< -40\)
\(\Rightarrow x< -8\)
a, \(\frac{2\left(2-3x\right)}{5}< \frac{4-2x}{3}\Leftrightarrow\frac{4-6x}{5}-\frac{4-2x}{3}< 0\)
\(\Leftrightarrow\frac{12-18x-20+10x}{15}< 0\Leftrightarrow-8x-8< 0\Leftrightarrow x>-1\)vì 15 > 0
-/-/-(----|------>
-1 0
Vậy tập ngiệm của bft là S = { x | x > -1 }
b, \(x\left(9x+1\right)+1\le\left(1-3x\right)^2\Leftrightarrow9x^2+x+1\le1-6x+9x^2\)
\(\Leftrightarrow7x\le0\Leftrightarrow x\le0\)
-------]--/-/-/-/-->
0
Vậy tập nghiệm của bft là S = { x | x =< 0 }
\(\frac{2\cdot\left(2-3x\right)}{5}< \frac{4-2x}{3}\)
\(\frac{4-6x}{5}< \frac{4-2x}{3}\)
\(\left(4-6x\right)\cdot3< \left(4-2x\right)\cdot5\)
\(12-18x< 20-10x\)
\(10x-18x< 20-12\)
\(-8x< 8\)
\(x>-1\)
\(x\cdot\left(9x+1\right)+1\le\left(1-3x\right)^2\)
\(9x^2+x+1\le9x^2-6x+1\)
\(x\le-6x\)
\(x+6x\le0\)
\(7x\le0\)
\(x\le0\)
Xin phép bỏ biểu diễn trên trục :))
a) \(2x-1< 2\left(x-1\right)\)
\(\Leftrightarrow2x-1< 2x-2\)
\(\Leftrightarrow2x-2x< 1-2\)
\(0x< -1\)( vô lí )
Vậy bất phương trình vô nghiệm.
b) \(\frac{x-1}{3}-\frac{2+3x}{4}>\frac{1}{6}\)
\(\Leftrightarrow\frac{4\left(x-1\right)-3\left(2+3x\right)}{12}>\frac{2}{12}\)
\(\Leftrightarrow4x-4-6-9x>2\)
\(\Leftrightarrow-5x-10>2\)
\(\Leftrightarrow-5x>12\)
\(\Leftrightarrow x< \frac{-12}{5}\)
Vậy...........
\(\Leftrightarrow\frac{2x+1-6x+4}{4}-\frac{1}{4}\ge0\Leftrightarrow\frac{-4x+4}{4}\ge0\Rightarrow-4\left(x-1\right)\ge0\left(4>0\right)\Rightarrow x-1\le0\left(-4