K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

tham khảo:

 

\(a) 2+5+8+...+(3n−1)=n(3n+1)2 (1) Đặt Sn=2+5+8+...+(3n−1) Với n=1 ta có: S1=2=1(3.1+1)2 Giả sử (1) đúng với n=k(k≥1), tức là Sk=2+5+8+...+(3k−1)=k(3k+1)2 Ta chứng minh (1) đúng với n=k+1 hay Sk+1=(k+1)(3k+4)2 Thật vậy ta có: Sk+1=2+5+8+...+(3k−1)+[3(k+1)−1]=Sk+3k+2=k(3k+1)2+3k+2=3k2+k+6k+42=3k2+7k+42=(k+1)(3k+4)2 Vậy (1) đúng với mọi k≥1 hay (1) đúng với mọi n∈N∗ b) 3+9+27+...+3n=12(3n+1−3) (2) Đặt Sn=3+9+27+...+3n=12(3n+1−3) Với n=1, ta có: S1=3=12(32−3) (hệ thức đúng) Giả sử (2) đúng với n=k(k≥1) tức là Sk=3+9+27+...+3k=12(3k+1−3) Ta chứng minh (2) đúng với n=k+1, tức là chứng minh Sk+1=12(3k+2−3) Thật vậy, ta có: Sk+1=3+9+27+...+3k+1=Sk+3k+1=12(3k+1−3)+3k+1=32.3k+1−32=12(3k+2−3)(đpcm) Vậy (2) đúng với mọi k≥1 hay đúng với mọi n∈N∗\)

16 tháng 2 2021

Chụp ảnh hoặc sử dụng gõ công thức nhé bạn. Để vầy khó hiểu lắm

undefined

3 tháng 1 2018

\(\frac{1}{2.5}+\frac{1}{5.8}+...+\frac{1}{\left(3n-1\right)\left(3n+2\right)}\)

\(=\frac{1}{3}\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{3n-1}+\frac{1}{3n+2}\right)\)

\(=\frac{1}{3}\left(\frac{1}{2}-\frac{1}{3n+2}\right)=\frac{1}{3}\left(\frac{3n+2}{2\left(3n+2\right)}-\frac{2}{2\left(3n+2\right)}\right)=\frac{1}{3}\cdot\frac{3n}{2\left(3n+2\right)}=\frac{n}{2\left(3n+2\right)}\)

P/s: pải c/m 1/2*5+1/5*8+.....+1/(3n-1)*(3n+2)=n/2*(3n+2) chứ

15 tháng 10 2023

1:

\(\lim\limits_{n\rightarrow\infty}\dfrac{3n^5+3n^3-1}{n^3-2n}=\lim\limits_{n\rightarrow\infty}\dfrac{n^5\left(3+\dfrac{3}{n^2}-\dfrac{1}{n^5}\right)}{n^3\left(1-\dfrac{2}{n^2}\right)}\)

\(=\lim\limits_{n\rightarrow\infty}n^2\cdot3=+\infty\)

2: \(\lim\limits_{n\rightarrow\infty}\dfrac{3n^7+3n^5-n}{3n^2-2n}=\lim\limits_{n\rightarrow\infty}\dfrac{3n^6+3n^4-1}{3n-2}\)

\(=\lim\limits_{n\rightarrow\infty}\dfrac{n^6\left(3+\dfrac{3}{n^2}-\dfrac{1}{n^6}\right)}{n\left(3-\dfrac{2}{n}\right)}=\lim\limits_{n\rightarrow\infty}n^5=+\infty\)

16 tháng 2 2019

Đặt \(A=\frac{1}{2\cdot5}+\frac{1}{5\cdot8}+...+\frac{1}{\left(3n-1\right)\left(3n+2\right)}\)

\(3A=\frac{3}{2\cdot5}+\frac{3}{5\cdot8}+...+\frac{3}{\left(3n-1\right)\left(3n+2\right)}\)

\(3A=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{3n-1}-\frac{1}{3n+2}\)

\(3A=\frac{1}{2}-\frac{1}{3n+2}\)

\(3A=\frac{3n+2-2}{2\left(3n+2\right)}\)

\(A=\frac{3n}{2\left(3n+2\right)}\cdot\frac{1}{3}\)

\(A=\frac{n}{2\left(3n+2\right)}\left(đpcm\right)\)

16 tháng 2 2019

Xét vế trái, ta có :

   \(\frac{1}{2.5}+\frac{1}{5.8}+......+\frac{1}{\left(3n-1\right)\left(3n+2\right)}\)

   \(=\frac{1}{3}\left[\frac{3}{2.5}+\frac{3}{5.8}+.....+\frac{3}{\left(3n-1\right)\left(3n+2\right)}\right]\)

    \(=\frac{1}{3}\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+....+\frac{1}{3n-1}-\frac{1}{3n-2}\right)\)

    \(=\frac{1}{3}\left(\frac{1}{2}-\frac{1}{3n+2}\right)=\frac{1}{3}.\frac{3n}{2\left(3n+2\right)}=\frac{n}{2\left(3n+2\right)}\)

Vế trái đúng bằng vế phải. Đẳng thức đã được chứng tỏ là đúng

a: A=3n^2-n-3n^2+6n=5n chia hết cho 5

b: B=n^2+5n-n^2+n+6=6n+6=6(n+1) chia hết cho 6

c: =n^3+2n^2+3n^2+6n-n-2-n^3+2

=5n^2+5n

=5(n^2+n) chia hết cho 5

15 tháng 10 2023

1: 

\(\lim\limits_{n\rightarrow\infty}\dfrac{-3n^3+3n^2-1}{n^2-2n}=\lim\limits_{n\rightarrow\infty}\dfrac{n^3\left(-3+\dfrac{3}{n}-\dfrac{1}{n^3}\right)}{n^2\left(1-\dfrac{2}{n}\right)}\)

\(=\lim\limits_{n\rightarrow\infty}\dfrac{-3n^3}{n^2}=\lim\limits_{n\rightarrow\infty}-3n=-\infty\)

2: 

\(\lim\limits_{n\rightarrow\infty}\dfrac{3n^2-1}{-2n+3}=\lim\limits_{n\rightarrow\infty}\dfrac{n^2\left(3-\dfrac{1}{n^2}\right)}{n\left(-2+\dfrac{3}{n}\right)}\)

\(=\lim\limits_{n\rightarrow\infty}\dfrac{-3}{2}n=-\infty\)

10 tháng 1 2021

Đặt \(T=1.4+4.7+...+\left(3n-2\right)\left(3n+1\right)\).

Ta có: \(9T=1.4.\left[7-\left[-2\right]\right]+4.7.\left(10-1\right)+7.10.\left(13-4\right)+...+\left(3n-2\right).\left(3n+1\right).\left[\left(3n+4\right)-\left(3n-5\right)\right]=1.4.7-\left(-2\right).1.4+4.7.10-1.4.7+7.10.13-4.7.10+...+\left(3n-2\right)\left(3n+1\right)\left(3n+4\right)-\left(3n-5\right)\left(3n-2\right)\left(3n+1\right)=\left(3n-2\right)\left(3n+1\right)\left(3n+4\right)-\left(-2\right).1.4=9n\left(3n^2+3n-2\right)\Rightarrow T=n\left(3n^2+3n-2\right)\).

12 tháng 11 2021

a: \(\Leftrightarrow2n^4-2n^3-n^3+n^2-n^2+n-2⋮n-1\)

\(\Leftrightarrow n-1\in\left\{-1;1;2\right\}\)

hay \(n\in\left\{0;2;3\right\}\)