a=101+100+99+...+2+1/101-100+99-98+...-2+1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Xét tử số:
$101+100+99+98+...+3+2+1=(101+1).101:2=5151$
Xét mẫu số:
$101-100+99-98+...+3-2+1$
$=(101-100)+(99-98)+...+(3-2)+1=\underbrace{1+1+....+1}_{50} +1=1.50+1=51$
Vậy $A=\frac{5151}{51}=101$
\(A=\dfrac{101+100+99+98+...+3+2+1}{101-100+99-98+...+3-2+1}\\ A=\dfrac{\left[\left(101-1\right):1+1\right]\times\left(101+1\right):2}{1+1+...+1+1}\\ A=\dfrac{5151}{51}=101\\ B=\dfrac{3737.43}{4343.37}\\ B=\dfrac{37.101.43}{43.101.37}\\ B=1\)
\(\dfrac{101+100+99+98+...+1}{101-100+99-98+...+2-1}\) (1)
Đặt A = 101 + 100 + 99 + 98 + ... + 1
Số số hạng của tổng A là :
(101 - 1) : 1 + 1 = 101 (số hạng)
Suy ra : A = (101 + 1) x 101 : 2 = 5151
Đặt B = 101 - 100 + 99 - 98 + ... + 3 - 2 + 1 (Mẫu số sai đề)
B = (101 - 100) + (99 - 98) + ... + (3 - 2) + 1 (Có : (101 - 3) : 2 + 1 = 50 cặp)
B = 1 + 1 + ... + 1 + 1 (Có : 50 + 1 = 51 số hạng 1)
B = 1 x 51
B = 51
Thay A,B vào (1), ta được :
\(\dfrac{101+100+99+98+...+1}{101-100+99-98+...+2-1}\) = \(\dfrac{5151}{51}\)= 101
* Mẫu số sai đề
\(A=\frac{101+100+99+98+....+3+2+1}{101-100+99-98+...+3-2+1}\)
\(A=\frac{1+2+3+...+98+99+100+101}{\left(101-100\right)+\left(99-98\right)+...+\left(3-2\right)+1}\)có 50 cặp số ở dưới mẫu
\(A=\frac{\frac{101.102}{2}}{50.1+1}\)
\(A=\frac{5151}{51}\)
\(A=101\)
Đặt A = 101+100+....+3+2+1
=> Số số hạng của A là: (101-1)+1 = 101 (số)
Tổng A là: (101+1) x 101 :2 = 5151
Đặt B = 101 -100+99 -98+97+...+3-2+1
=> 100 +98+....+1
=> Số số hạng: (100-1)+1 = 100 (số)
Tổng B là: (100 +1) x 100 :2 = 5050
Vậy \(\frac{A}{B}=\frac{5151}{5050}=\frac{51}{50}\)
Ta chia thành hai vế (1) và (2)
Số số hạng (1) là :
( 101 - 1 ) : 1 + 1 = 101 ( số )
Tổng (1) là :
( 101 + 1 ) x 101 : 2 = 5151
Tự tính tiếp
Ta chia thành hai vế (1) và (2)
Số số hạng (1) là :
( 101 - 1 ) : 1 + 1 = 101 ( số )
Tổng (1) là :
( 101 + 1 ) x 101 : 2 = 5151
Tự tính tiếp
Có tất cả số số hạng là:
( 101 - 1 ) : 1 + 1 = 101 ( số )
Tổng của các số đó là:
( 101 + 1 ) x 101 : 2 = 5151
Đáp số: 5151
(101+100+99+98+...+3+2+1)/(101-100+99-98+...+3-2+1)
=101+100+99+98+...+3+2+1
=101 . (101 + 2) : 2
=5151
101-100+99-98+...+3-2+1
=(101-100)+(99-98)+...+(3-2)+1
=1 + 1 + 1 + ... + 1
=101- 2 + 1
=100 : 2
=50 + 1
=51
(101 + 100 + 99 + 98 + ... + 3+2+1) / (101-100+99-98+...+3-2+1) = 5151/51 = 101
\(A=\frac{101+100+99+98+..+3+2+1}{101-100+99-98+..+3-2+1}=\frac{101\times\frac{102}{2}}{1+1+..+1}=\frac{101\times102}{2\times51}=101\)
\(B=\frac{423134.846267-423133}{423133.846267+423134}=\frac{423134^2+423134.423133-423133}{423133^2+423133.423134+423134}=\frac{423134^2+423133^2}{423134^2+423133^2}=1\)
a=101+100+99+...+2+1/101-100+99-98+...-2+1
a= (101+1).[(101-1):1+1]:2/(101-100)+(99-98)+...+(3-2)+1
a= 102.101:2/1+1+...1+1(có 51 số 1)
a=5151/51
a=101
rút gọn còn 101 -1 và 1;-1+1=0a=101