chia số 310 thành 3 phần:
a) Tỷ lệ thuận với 2,3,5
b) Tỷ lệ nghịch với 2,3,5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Gọi ba phần số 310 lần lượt là a;b;c
Vì ba phần tỉ lệ thuận với 2;3;5
\(\Rightarrow\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{5}=\dfrac{a+b+c}{2+3+5}=\dfrac{310}{10}=31\)( Tính chất dãy tỉ số bằng nhau)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{a}{2}=31\\\dfrac{b}{3}=31\\\dfrac{c}{5}=31\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a=31.2=62\\b=31.3=93\\c=31.5=135\end{matrix}\right.\)
Vậy ba phần số 310 lần lượt là 62;93;135
b, Gọi ba phần số 310 lần lượt là x;y;z(x,y,z ∈ N)
Vì ba phần tỉ lệ nghịch với 2;3;5
\(\Rightarrow2a=3b=5c\)
\(\Rightarrow2a.\dfrac{1}{30}=3b.\dfrac{1}{30}=5c.\dfrac{1}{30}\)
\(\Rightarrow\dfrac{a}{15}=\dfrac{b}{10}=\dfrac{c}{6}=\dfrac{a+b+c}{15+10+6}=\dfrac{310}{31}=10\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{a}{15}=10\\\dfrac{b}{10}=10\\\dfrac{c}{6}=10\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a=10.15=150\\b=10.10=100\\c=10.6=60\end{matrix}\right.\)
Vậy ba phần số 310 lần lượt là 150;100;60
a: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{5}=\dfrac{a+b+c}{2+3+5}=\dfrac{310}{10}=31\)
Do đó: a=62; b=63; c=155
Gọi 3 phần là a,b,c(a,b,c>0)
a, Áp dụng tc dtsbn:
\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{5}=\dfrac{a+b+c}{2+3+5}=\dfrac{310}{10}=31\\ \Rightarrow\left\{{}\begin{matrix}a=62\\b=93\\c=155\end{matrix}\right.\)
b, Áp dụng tc dtsbn:
\(2a=3b=5c\Rightarrow\dfrac{2a}{30}=\dfrac{3b}{30}=\dfrac{5c}{30}\Rightarrow\dfrac{a}{15}=\dfrac{b}{10}=\dfrac{c}{6}=\dfrac{a+b+c}{15+10+6}=\dfrac{310}{31}=10\\ \Rightarrow\left\{{}\begin{matrix}a=150\\b=100\\c=60\end{matrix}\right.\)
a/ Gọi 3 phần cần tìm lần lượt là a,b,c
Vì a,b,c tỉ lệ thuận với 3 ; 4 ; 6
=> \(\frac{a}{3}=\frac{b}{4}=\frac{c}{6}\) và a +b +c = 156
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a}{3}=\frac{b}{4}=\frac{c}{6}=\frac{a+b+c}{3+4+6}=\frac{156}{13}=12\)
\(\Rightarrow\left[\begin{array}{nghiempt}a=12.3\\b=12.4\\c=12.6\end{array}\right.\) \(\Rightarrow\left[\begin{array}{nghiempt}a=36\\b=48\\c=72\end{array}\right.\)
Vậy......................
b/ Gọi 3 phần cần tìm lần lượt là x, y, z
Vì x, y, z tỉ lệ nghịch với 3; 4; 6 nên ta có:
x3 = y4 = z6 hay \(\frac{x}{\frac{1}{3}}=\frac{y}{\frac{1}{4}}=\frac{z}{\frac{1}{6}}\) và x+ y+ z = 156
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{\frac{1}{3}}=\frac{y}{\frac{1}{4}}=\frac{z}{\frac{1}{6}}=\frac{x+y+z}{\frac{1}{3}+\frac{1}{4}+\frac{1}{6}}=\frac{156}{\frac{3}{4}}=208\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=208.\frac{1}{3}\\y=208.\frac{1}{4}\\z=208.\frac{1}{6}\end{array}\right.\) \(\Rightarrow\left[\begin{array}{nghiempt}x=\frac{208}{3}\\y=52\\z=\frac{104}{3}\end{array}\right.\)
Vậy...............................
a ) Gọi 3 phần cần tìm lần lượt là a,b,c
Vì a,b,c tỉ lệ thuận với 3 ; 4 ; 6
=> a3=b4=c6a3=b4=c6 và a +b +c = 156
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
a3=b4=c6=a+b+c3+4+6=15613=12a3=b4=c6=a+b+c3+4+6=15613=12
⇒⎡⎢⎣a=12.3b=12.4c=12.6⇒[a=12.3b=12.4c=12.6 ⇒⎡⎢⎣a=36b=48c=72⇒[a=36b=48c=72
Vậy......................
b/ Gọi 3 phần cần tìm lần lượt là x, y, z
Vì x, y, z tỉ lệ nghịch với 3; 4; 6 nên ta có:
x3 = y4 = z6 hay x13=y14=z16x13=y14=z16 và x+ y+ z = 156
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
x13=y14=z16=x+y+z13+14+16=15634=208x13=y14=z16=x+y+z13+14+16=15634=208
⇒⎡⎢ ⎢ ⎢⎣x=208.13y=208.14z=208.16⇒[x=208.13y=208.14z=208.16 ⇒⎡⎢ ⎢⎣x=2083y=52z=1043⇒[x=2083y=52z=1043
Vậy x , y ,z = ..... ( như trên )
a) Gọi 3 phần đó lần lượt là a, b, c.
Theo đề ta có:
\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{5}\) và \(a+b+c=310\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{5}=\dfrac{a+b+c}{2+3+5}=\dfrac{310}{10}=31\)
\(\dfrac{a}{2}=31\Rightarrow a=31.2=62\)
\(\dfrac{b}{3}=31\Rightarrow b=31.3=93\)
\(\dfrac{c}{5}=31\Rightarrow c=31.5=155\)
Vậy chia số 310 thành 3 phần lần lượt là 62, 93, 155
b) Gọi 3 phần đó lần lượt là a, b, c.
Theo đề ta có:
\(\dfrac{a}{\dfrac{1}{2}}=\dfrac{b}{\dfrac{1}{3}}=\dfrac{c}{\dfrac{1}{5}}\) và \(a+b+c=310\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{\dfrac{1}{2}}=\dfrac{b}{\dfrac{1}{3}}=\dfrac{c}{\dfrac{1}{5}}=\dfrac{a+b+c}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{5}}=\dfrac{310}{\dfrac{31}{30}}=300\)
\(\dfrac{a}{\dfrac{1}{2}}=300\Rightarrow a=300.\dfrac{1}{2}=150\)
\(\dfrac{b}{\dfrac{1}{3}}=300\Rightarrow b=300.\dfrac{1}{3}=100\)
\(\dfrac{c}{\dfrac{1}{5}}=300\Rightarrow c=300.\dfrac{1}{5}=60\)
Vậy chia số 310 thành 3 phần lần lượt là 150, 100, 60
Gọi ba phần được chia lần lượt là a,b,c
a: Theo đề, ta có: a/2=b/3=c/5
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{5}=\dfrac{a+b+c}{2+3+5}=\dfrac{310}{10}=31\)
Do đó: a=62; b=93; c=155
b: Theo đề, ta có: 2a=3b=5c
=>2a/30=3b/30=5c/30
=>a/15=b/10=c/6
Áp dụng tính chất của dãy tỉ số bằng nhau,ta được:
\(\dfrac{a}{15}=\dfrac{b}{10}=\dfrac{c}{6}=\dfrac{a+b+c}{15+10+6}=\dfrac{310}{31}=10\)
Do đó: a=150; b=100; c=60
a: Áp dụng tính chất của dãy tỉ số bằng nhau, ta đc:
\(\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{5}=\dfrac{a+b+c}{3+4+5}=\dfrac{552}{12}=46\)
=>a=138; b=184; c=230
b: Gọi ba số cần tìm lần lượt là a,b,c
Theo đề, ta có: 3a=5b=6c
=>a/10=b/6=c/5
Áp dụng tính chất của DTSBN, ta đc:
\(\dfrac{a}{10}=\dfrac{b}{6}=\dfrac{c}{5}=\dfrac{a+b+c}{10+6+5}=\dfrac{315}{21}=15\)
=>a=150; b=90; c=75
Giải:
Gọi 3 số cần tìm là a, b, c
a) Ta có: \(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}\) và a + b + c = 310
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=\frac{a+b+c}{2+3+5}=\frac{310}{10}=31\)
\(\Rightarrow a=62,b=93,c=155\)
Vậy 3 phần đó lần lượt là 62; 93; 155
b) Ta có: \(2a=3b=5c\Rightarrow\frac{2a}{30}=\frac{3b}{30}=\frac{5c}{30}\Rightarrow\frac{a}{15}=\frac{b}{10}=\frac{c}{6}\) và a + b + c = 310
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{15}=\frac{b}{10}=\frac{c}{6}=\frac{a+b+c}{15+10+6}=\frac{310}{31}=10\)
\(\Rightarrow a=150;b=100;c=60\)
Vậy 3 phần đó lần lượt là 150; 100; 60