K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 12 2016

\(\text{(x-1)^2+(x-3)}^2=x^2-2x+1+x^2-6x+9=2x^2-8x+10\)

\(=\left(2x^2-8x+8\right)+2\)

\(=2\left(x-2\right)^2+2\ge2\)

Vậy GTNN là 2 đạt được khi x = 2

16 tháng 12 2016

2x^2-8x+10

7 tháng 7 2018

Ta có : 

\(\left|x-1,2\right|\ge0;\left|y-\frac{3}{4}\right|\ge0\)

\(\Rightarrow\left|x-\frac{1}{2}\right|+\left|y-\frac{3}{4}\right|-1,5\ge-1,5\forall x;y\)

Dấu \("="\)

\(\Leftrightarrow\hept{\begin{cases}\left|x-\frac{1}{2}\right|=0\\\left|y-\frac{3}{4}\right|=0\end{cases}\Leftrightarrow\hept{\begin{cases}x-\frac{1}{2}=0\\y-\frac{3}{4}=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{3}{4}\end{cases}}}\)

Vậy ...

Ta có :

\(2\left|x+3\right|\ge0;3\left|y-1\right|\ge0\)

\(\Rightarrow Q=-14-2\left|x+3\right|-3\left|y-1\right|\le-14\forall x;y\)

Dấu \("="\)

\(\Leftrightarrow\hept{\begin{cases}\left|x+3\right|=0\\\left|y-1\right|=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+3=0\\y-1=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-3\\y=1\end{cases}}}\)

Vậy ...

7 tháng 7 2018

Giá trị nhỏ nhất của B = 0

Giá trị lớn nhất của Q = -11

4 tháng 5 2017

Ta có:I x+2I; I 2y - 10I lớn hơn hoặc bằng 0 vs mọi x 

Để S nhỏ nhất thì  Ix+2I; I 2y - 10I => x+2 = 0 và 2y-10 = 0 => x=-2 và y=5

6 tháng 2 2018

Ta thấy |x + 2| ≥ 0 với mọi x

             |2y - 10| ≥ 0 với mọi y

=> |x + 2| + |2y - 10| ≥ 0 với mọi x,y

=> |x + 2| + |2y - 10| + 1010 ≥ 1010 với mọi x,y

=> S ≥ 1010 với mọi x,y

Dấu " = " xảy ra

\(\Leftrightarrow\hept{\begin{cases}|x+2|=0\\|2y-10|=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x+2=0\\2y-10=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=-2\\y=5\end{cases}}\)

Vậy với x = -2 và y = 5 thì S đạt GTNN là 1010.

ta có |x+3|>=0;|2y-14|>=0

=>|x+3|+|2y-14|>=0

=>S>=2016

dấu "=" xảy ra khi và chỉ khi (x+3)(2y-14)=0

=>x+3=0 và 2y-14=0

x=-3 và y=7

Vậy GTNN của S=2016 khi x=-3 và y=7

6 tháng 2 2019

Ta có :\(y=\frac{x^2+2}{x^2+x+1}\)

\(\Leftrightarrow yx^2+yx+y=x^2+2\)

\(\Leftrightarrow x^2\left(y-1\right)+yx+y-2=0\)(1)

*Xét y = 1 thì pt trở thành \(x-1=0\)

                                   \(\Leftrightarrow x=1\)

*Xét \(y\ne1\)thì pt (1) là pt bậc 2 ẩn x

Có \(\Delta=y^2-4\left(y-1\right)\left(y-2\right)\)

         \(=y^2-4\left(y^2-3y+2\right)\)

          \(=y^2-4y^2+12y-8\)

         \(=-3y^2+12y-8\)

Pt (1) có nghiệm khi \(\Delta\ge0\)

                         \(\Leftrightarrow-3y^2+12y-8\ge0\)

                         \(\Leftrightarrow\frac{6-2\sqrt{3}}{3}\le y\le\frac{6+2\sqrt{3}}{3}\)

6 tháng 2 2019

bạn icu... làm đúng rồi

14 tháng 8 2023

a) *Xét x=0

==> Giá trị A=2022!(1)

*Xét 0<x≤2022

==> A=0(2)

*Xét x>2022

==> A≥2022!(3)

Từ (1),(2) và (3) ==> Amin=0 khi0<x≤2022

Mà để xmax ==> x=2022 

Vậy ...

b)B=\(\dfrac{2018+2019+2020}{x-2021}\)=\(\dfrac{6057}{x-2021}\) (Điều kiện x-2021≠0 hay x≠2021)

Để Bmax ==> x-2021 là số tự nhiên nhỏ nhất

Mà x-2021≠0 =>x-2021=1==>x=2022

Khi đó Bmax=6057

Vậy...