K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 12 2016

DK: \(x\ne0;y\ne0\)

\(\left(\frac{x^2-y^2}{6x^2y^2}\right):\left(\frac{x+y}{3xy}\right)=\left(\frac{\left(x-y\right)\left(x+y\right)}{6x^2y^2}\right).\left(\frac{3xy}{\left(x+y\right)}\right)=\frac{x-y}{2xy}\)

2 tháng 9 2020

\(ĐKXĐ:x\ne y,x\ne0,y\ne0\)

Ta có : \(\frac{3xy^2+x^2y}{xy\left(x-y\right)}-\frac{3x^2y+xy^2}{xy.\left(x-y\right)}\)

\(=\frac{3xy^2+x^2y-3x^2y-xy^2}{xy.\left(x-y\right)}\)

\(=\frac{-3xy.\left(x-y\right)+xy.\left(x-y\right)}{xy.\left(x-y\right)}=\frac{-2xy.\left(x-y\right)}{xy.\left(x-y\right)}=-2\)

2 tháng 9 2020

\(\frac{3xy^2+x^2y}{xy\left(x-y\right)}-\frac{3x^2y+xy^2}{xy.\left(x-y\right)}\)

\(=\frac{3xy^2+x^2y}{xy\left(x-y\right)}+\frac{-\left(3x^2y+xy^2\right)}{xy.\left(x-y\right)}\)

\(=\frac{3xy^2+x^2y-3x^2y-xy^2}{xy.\left(x-y\right)}\)

\(=\frac{\left(3xy^2-3x^2y\right)+\left(x^2y-xy^2\right)}{xy.\left(x-y\right)}\)

\(=\frac{3xy.\left(y-x\right)+xy.\left(x-y\right)}{xy.\left(x-y\right)}\)

\(=\frac{-3xy.\left(x-y\right)+xy.\left(x-y\right)}{xy.\left(x-y\right)}\)

\(=\frac{\left(x-y\right).\left(-3xy+xy\right)}{xy.\left(x-y\right)}\)

\(=\frac{-3xy+xy}{xy}\)

\(=\frac{-2xy}{xy}\)

\(=-2.\)

14 tháng 5 2022

`a)[3x+2]/[x^2]:[6x+4]/[2x^2]`       

`=[3x+2]/[x^2].[2x^2]/[2(3x+2)]`

`=1`

____________________________________________________

`b)[4xy]/[x+y]:[6x^2y^3]/[x^2-y]`         

`=[4xy]/[x+y].[(x-y)(x+y)]/[6xy.xy^2]`

`=[2(x-y)]/[3xy^2]=[2x-2y]/[3xy^2]`

2 tháng 10 2016

Bạn xem lại đề!

2 tháng 10 2016

Kết quả rất lẻ : \(\frac{-16y^2\sqrt{x^7y}+3x^3y\sqrt{xy^3}+500x^2\sqrt{y^5}}{\sqrt{2}x^2}\)

17 tháng 12 2019

a) \(\frac{2x-7}{10x-4}-\frac{3x+5}{4-10x}\)

\(=\frac{2x-7}{10x-4}-\frac{-\left(3x+5\right)}{-\left(4-10x\right)}\)

\(=\frac{2x-7}{10x-4}-\frac{5-3x}{10x-4}\)

\(=\frac{2x-7-\left(5-3x\right)}{10x-4}\)

\(=\frac{2x-7-5+3x}{10x-4}\)

\(=\frac{5x-12}{10x-4}\)

18 tháng 11 2015

\(\frac{1}{x-y}+\frac{3xy}{y^3-x^3}+\frac{x-y}{x^2+xy+y^2}\)

\(=\frac{1}{x+y}-\frac{3xy}{x^3-y^3}+\frac{x-y}{x^2+xy+y^2}\)

\(=\frac{1.\left(x^2+xy+y^2\right)}{\left(x-y\right)\left(x^2+xy+y^2\right)}-\frac{3xy}{\left(x-y\right)\left(x^2+xy+y^2\right)}+\frac{\left(x-y\right)^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)

\(=\frac{x^2+xy+y^2-3xy+x^2-2xy+y^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)

\(=\frac{2x^2-4xy+2y^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}=\frac{2\left(x^2-2xy+y^2\right)}{\left(x-y\right)\left(x^2+xy+y^2\right)}=\frac{2\left(x-y\right)^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}=\frac{2\left(x-y\right)}{x^2+xy+y^2}\)