a/2014=b/20125=c/2016
Tìm M = 4.( a-b ) . ( b-c) - ( c-a )2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do \(ab+bc+ac=2014\) nên từ giả thiết tương đương :
\(\frac{a^2+ab+bc+ac}{a+b}+\frac{b^2+ab+bc+ca}{b+c}+\frac{c^2+ab+bc+ca}{c+a}\)
\(=\frac{\left(a+b\right)\left(a+c\right)}{\left(a+b\right)}+\frac{\left(b+c\right)\left(b+a\right)}{a+b}+\frac{\left(c+a\right)\left(c+b\right)}{c+a}\)
\(=a+c+b+a+c+b=2\left(a+b+c\right)\) (đpcm )
buithianhtho, Vũ Minh Tuấn, Băng Băng 2k6, No choice teen, Akai Haruma, Nguyễn Thanh Hằng, Duy Khang,
@tth_new, @Nguyễn Việt Lâm, @Nguyễn Thị Ngọc Thơ, @Nguyễn Huy Thắng
Mn giúp e vs ạ! Cần gấp ạ!
Thanks nhiều lắm ạ!
Bác phải đọc cái đề nữa chứ. Đâu phải thấy giông giống là giải y chan đâu. Có thể cái đề của bác lúc trước là x,y,z không âm nên mới giải vậy. Còn nếu x,y,z dương thì phải giải khác.
Ta có:
\(a+a^3+b+b^3+c+c^3\ge2\left(a^2+b^2+c^2\right)\)
Dấu = xảy ra khi \(a=b=c=1\)
Vậy nên không tồn tại giá trị a,b,c thỏa mãn bài toán.
Lời giải:
Áp dụng BĐT AM-GM:
\(a^{2014}+\underbrace{1+1+....+1}_{1006}\geq 1007\sqrt[1007]{a^{2014}}=1007a^2\)
\(\Leftrightarrow a^{2014}+1006\geq 1007a^2\)
\(\Rightarrow a^{2014}+2013\geq 1007(a^2+1)\)
\(\Rightarrow \frac{a^{2014}+2013}{b^2+1}\geq \frac{1007(a^2+1)}{b^2+1}\). Hoàn toàn TT với các phân thức còn lại và cộng theo vế:
\(A\geq 1007\left(\frac{a^2+1}{b^2+1}+\frac{b^2+1}{c^2+1}+\frac{c^2+1}{a^2+1}\right)\)
\(\geq 1007.3\sqrt[3]{\frac{(a^2+1)(b^2+1)(c^2+1)}{(b^2+1)(c^2+1)(a^2+1)}}=3021\) (theo AM-GM)
Vậy \(A_{\min}=3021\Leftrightarrow a=b=c=1\)
Đặt: \(\dfrac{a}{2012}=\dfrac{b}{2013}=\dfrac{c}{2014}=k\)
\(\rightarrow a=2012k,b=2013k,c=2014k\)
Vế trái: \(4.\left(2012k-2013k\right)\left(2013k-2014k\right)=4.\left(-1k\right).\left(-1k\right)=4k^2\)
Vế phải: \(\left(2014k-2012k\right)^2=\left(2k\right)^2=4k^2\)
\(\rightarrow\) Vế trái = vế phải = \(4k^2\)
Ta có: a2 + b2 = c2 + d2
=> a2 - c2 = d2 - b2
=> (a - c)(a + c) = (d - b)(d + b)
Mà a + b = c + d
=> a - c = d - b
+) Nếu a = c
=> a - c = d - b = 0
=> d = b
=> a2014 = c2014 và d2014 = b2014
=> a2014 + b2014 = c2014 + d2014 (1)
+) Nếu a \(\ne\) c
=> a - c = d - b (khác 0)
=> d \(\ne\) b
Có (a - c)(a + c) = (d - b)(d + b)
=> a + c = d + c (2)
Mà a + b = c + d (3)
Lấy (2) + (3) ta được:
2a + b + c = 2d + b + c
=> 2a = 2d
=> a = d
=> c = b
=> a2014 = d2014 và c2014 = b2014
=> a2014 + b2014 = c2014 + d2014 (4)
Kết hợp (1) và (4) ta được: a2014 + b2014 = c2014 + d2014 (ĐPCM)