Từ điểm A ở ngoài (0) vẽ 2 tiếp tuyến AB ,AC và cát tuyến AMN của đường tròn đó . Gọi I là trung điểm của dây MN . CM năm điểm A,B,I,O,C cùng nằm trên một đường tròn ,xasc định tâm và bán kính củ đường tròn này
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác ABOC có
\(\widehat{ABO}+\widehat{ACO}=180^0\)
Do đó: ABOC là tứ giác nội tiếp
hay A,B,O,C cùng thuộc một đường tròn(1)
Xét tứ giác OIAC có
\(\widehat{OIA}+\widehat{OCA}=180^0\)
Do đó: OIAC là tứ giác nội tiếp
hay O,I,A,C cùng thuộc một đường tròn(2)
Từ (1) và (2) suy ra A,B,O,I,C cùng thuộc một đường tròn
b: Xét (O) có
AB là tiếp tuyến
AC là tiếp tuyến
Do đó: AB=AC
hay A nằm trên đường trung trực của BC(3)
Ta có: OB=OC
nên O nằm trên đường trung trực của BC(4)
Từ (3) và (4) suy ra OA⊥BC(5)
Xét (O) có
ΔBCD nội tiếp
BD là đường kính
Do đó: ΔBCD vuông tại C
hay BC⊥CD(6)
Từ (5) và (6) suy ra CD//OA
a) Xét tứ giác ABOC có
\(\widehat{ABO}\) và \(\widehat{ACO}\) là hai góc đối
\(\widehat{ABO}+\widehat{ACO}=180^0\left(90^0+90^0=180^0\right)\)
Do đó: ABOC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
a: góc OIA+góc OCA=180 độ
=>OIAC nội tiếp
b: Gọi giao của DC và OA là H
=>BC vuông góc OA tại H
Xét ΔOHD vuông tại H và ΔOIA vuông tại I có
góc HOD chung
=>ΔOHD đồng dạng với ΔOIA
=>OH*OA=OI*OD
=>OI*OD=R^2
a: ΔODE cân tại O
mà OI là trung tuyến
nên OI vuông góc DE
góc OIA=góc OBA=góc OCA=90 độ
=>O,I,B,A,C cùng thuộc 1 đường tròn
b: góc BIA=góc BOA
góc CIA=góc COA
mà góc BOA=góc COA
nên góc BIA=góc CIA
=>IA là phân giác của góc BIC