Tìm x biết
| x - 2017 | = x - 2016
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2016 x 2016 - 2015 x 2017 + x = 2016
(2016 x 2016) - (2015 x 2017) + x = 2016
4064256 - 4064255 + x = 2016
1 + x = 2016
x = 2016 - 1
x = 1
|x-2016|2016+|x-2017|2016=1
|x-2016|2016=1 hoặc |x-2017|2016=1
th1:|x-2016|2016=1
|x-2016|2016=12016
x-2016=1
x=1+2016
x=2017
th2:
làm tương tự
Ta có: \(\frac{x-2019}{2018}+\frac{x-2018}{2017}=\frac{x-2017}{2016}+\frac{x-2016}{2015}\)
\(\Leftrightarrow\left(\frac{x-2019}{2018}+1\right)+\left(\frac{x-2018}{2017}+1\right)=\left(\frac{x-2017}{2016}+1\right)+\left(\frac{x-2016}{2015}+1\right)\)
\(\Leftrightarrow\frac{x-1}{2018}+\frac{x-1}{2017}=\frac{x-1}{2016}+\frac{x-1}{2015}\)
\(\Leftrightarrow\frac{x-1}{2018}+\frac{x-1}{2017}-\frac{x-1}{2016}-\frac{x-1}{2015}=0\)
\(\Leftrightarrow\left(x-1\right)\left(\frac{1}{2018}+\frac{1}{2017}-\frac{1}{2016}-\frac{1}{2015}\right)=0\)
\(\Leftrightarrow x-1=0\)( vì \(\frac{1}{2018}+\frac{1}{2017}-\frac{1}{2016}-\frac{1}{2015}\ne0\))
\(\Leftrightarrow x=1\)
Vạy x=1
\(\hept{\begin{cases}x^{2017}+y^{2017}=1\left(1\right)\\\sqrt[2017]{x}-\sqrt[2017]{y}=\left(\sqrt[2016]{y}-\sqrt[2016]{x}\right)\left(x+y+xy+2017\right)\left(2\right)\end{cases}}\)
Điều kiện: \(x,y\ge0\)
Dễ thấy \(\hept{\begin{cases}x=0\\y=0\end{cases}}\)không phải là nghiệm của hệ
Đặt \(\hept{\begin{cases}\sqrt[2017.2016]{x}=a>0\\\sqrt[2017.2016]{y}=b>0\end{cases}}\)
\(\Rightarrow\left(2\right)\Leftrightarrow a^{2016}-b^{2016}=\left(b^{2017}-a^{2017}\right)A\left(x,y\right)\)
\(\Leftrightarrow\left(a-b\right).B\left(a,b\right)=\left(b-a\right).C\left(a,b\right).A\left(x,y\right)\)
\(\Leftrightarrow\left(a-b\right)\left(B\left(a,b\right)+C\left(a,b\right).A\left(x,y\right)\right)=0\)
Dễ thấy \(\left(B\left(a,b\right)+C\left(a,b\right).A\left(x,y\right)\right)>0\)
\(\Leftrightarrow a=b\)
\(\Rightarrow\sqrt[2016.2017]{x}=\sqrt[2016.2017]{y}\)
\(\Leftrightarrow x=y\)
Thế vô (1) ta được:
\(2x^{2017}=1\)
\(\Rightarrow x=y=\sqrt[2017]{\frac{1}{2}}\)
Đặt A=2016*2016-2015*2017,ta có:
A=2016 *2016 - 2015 *2017
A=2016*(2015+1)-2015*(2016+1)
A=(2016*2015+2016)-(2015*2016+2015)
A=2016*2015+2016-2015*2016-2015
A=2016-2015=1
Mà A+x=2016
=>1+x=2016
=>x=2016-1
=>x=2015
Vậy x=2015...k nha mk đang âm điểm
2016 × 2016 - 2015 × 2017 + x = 2016
4 064 256 - 4 064 255 + x = 2016
1 + x = 2016
x = 2016 - 1
x = 2015. Vậy x = 2015
vì (x-2016)^2016 >= 0 vs mọi x
(y-2017)^2018>= 0 vs mọi y
/x+y-z/ >= 0 vs mọi x,y,z
mà (x-2016)^2016+(y-2017)^2018+/x-y+z/=\(\hept{\begin{cases}\left(x-2016\right)^{2016}=0\\^{\left(-2017\right)^{2018}}=0\\x+y-z=0\end{cases}}\)0 nên \(\hept{\begin{cases}x-2016=0\\y-2017=0\\x+y-z\end{cases}}\)\(\hept{\begin{cases}x=2016\\y=2017\\x+y-z=0\end{cases}}\)
mà x+y=2016+2017=4033
\(\Rightarrow\)4033-z=0
z=4033
vậy x=2016 y=2017 z=4033
là 2016.5