A= 3n+ 12 / n+4. Tìm số nguyên n.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c) Để \(\dfrac{2n+5}{n-3}\) ∈ Z thì 2n+5⋮n-3
⇒ 2n-3+8⋮n-3
⇒ 8⋮n-3 ⇒ n-3∈Ư(8)
Ư(8)={...}
⇒n=...
;-------------------------------; làm hết đeeeeeeeeeeeeeeeeeeeeeeeeeeeee
A=\(\frac{3n+4}{n-1}\)=\(\frac{3\left(n-1\right)+7}{n-1}\)=3+\(\frac{7}{n-1}\)
Để A nghuyên thì \(\frac{7}{n-1}\)nguyên => n-1 \(\in\)ƯC(7)=\(\left\{1;-1;7;-7\right\}\)
=>n\(\in\)\(\left\{2;0;8;-6\right\}\)
B=\(\frac{6n-3}{3n+1}\)=\(\frac{2\left(3n+1\right)-5}{3n+1}\)=2+\(\frac{-5}{3n+1}\)
=>3n+1\(\in\)ƯC(-5)=\(\left\{-1;1;-5;5\right\}\)
=>n\(\in\)\(\left\{0;-2\right\}\)
B1:
GỌI \(\left(n+1,3n+4\right)=d \)
=> \(\left(n+1\right)⋮d;\left(3n+4\right)⋮d \)
=>\(3.\left(n+1\right)⋮d;\left(3n+4\right)⋮d \)
=>\(\left(3n+3\right)⋮d;\left(3n+4\right)⋮d \)
=>\(\left(3n+4\right)-\left(3n+3\right)⋮d \)
=>\(\left(3n-3n\right)+\left(4-3\right)⋮d \)
=>\(1⋮d \)
=>\(\left(n+1,3n+4\right)=1\)
=>n+1;3n+4 là hai số nguyên tố cùng nhau .
B2:
CÓ 156:a( dư 12) ; 280:a( dư 10)
=>\(\left(156-12\right)⋮a;\left(280-10\right)⋮a\)
=>\(144⋮a;270⋮a\)
=> \(a\inƯC\left(144,270\right)\)
\(144=2^4.3^2;270=2.3^3.5\)
=> (144,270)=18
=>\(a\inƯ\left(18\right)\)
=>\(a\in\left\{1;2;3;6;9;18\right\}\)
A= 3n + 3.4/n+4
A= 3(n+4)/n+4
A= 3