chứng tỏ rằng:
tổng của hai số chẵn liên tiếp ko chia hết cho 4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Gọi X là 1 số bất kỳ. Ta có
=> X+(X+1)+(X+2)+(X+3)+(X+4)
=> 4X+1+2+3+4
=> 4X+10
Theo đề bài : 4X+10 chia hết cho 4
=> 4X chia hết cho 4 và 10 chia hết cho 4 ( vô lí )
=>........
b) tương tự
=>5X+15 chia hết cho 5
=> 5X chia hết cho 5 và 15 chia hết cho 5 ( hợp lí )
=>........
CHòi oi bố đăng nhiều thế con die
a, có
b, ko
c, XÉT 3stn liên tiếp: a,a+1,a+2 (a E N) a có dạng: 3k;3k+1;3k+2 (k E N)
d, tương tự c
d,
Gọi 4 số tự nhiên liên tiếp đó là k;k+1.k+2.k+3
nếu k chia hết cho 4 thì -> điều phài cm
nếu k chia cho 4 dư 1 thì k+3 chia hết cho 4 -> điều phài cm
nếu k chia cho 4 dư 2 thì k+2 chia hết cho 4 -> điều phài cm
nếu k chia cho 4 dư 3 thì k+1 chia hết cho 4 -> điều phài cm
a)Gọi 3 STN liên tiếp đó là a,a+1,a+2
Ta có: a+(a+1)+(a+2)=3a+3\(⋮\)3
b)Gọi 4 STN liên tiếp đó là a,a+1,a+2,a+3
Ta có: a+(a+1)+(a+2)+(a+3)=4a+6
4a \(⋮\)4, 6 ko chia hết cho 4 nên 4 STN liên tiếp ko chia hết cho 4
c)https://olm.vn/hoi-dap/detail/1244453028.html?pos=715628858
d)https://olm.vn/hoi-dap/detail/89811124041.html?pos=188188079430
a)Gọi 3 STN liên tiếp đó là a,a+1,a+2
Ta có: a+(a+1)+(a+2)=3a+3⋮⋮3
b)Gọi 4 STN liên tiếp đó là a,a+1,a+2,a+3
Ta có: a+(a+1)+(a+2)+(a+3)=4a+6
4a ⋮⋮4, 6 ko chia hết cho 4 nên 4 STN liên tiếp ko chia hết cho 4
a, Trong 2 số tự nhiên liên tiếp luôn có 1 chẵn và 1 lẻ
Mà số chẵn thì chia hết cho 2
=> ĐPCM
a) Ta có : 2 số tự nhiên liên tiếp là : 2k và 2k + 1 trong đó 2k chia hết cho 2
b) Ta có : 3 số tự nhiên liên tiếp là 3k ; 3k + 1 và 3k + 2 trong đó 3k chia hết cho 3
c) Ta có : 3 số tự nhiên liên tiếp là 3k ; 3k + 1 và 3k + 2
3k + 3k + 1 + 3k + 2 = ( 3k + 3k + 3k ) + ( 2 + 1 ) = 9k + 3
\(\hept{\begin{cases}9k⋮3\\3⋮3\end{cases}\Rightarrow\left(9k+3\right)⋮3}\)
d) Tương tự
Gọi 2 số đó là a và a+ 2
Ta có: a + a + 2 = a x 2 + 2
= (a+1) x 2
Mà a chẵn =>a + 1 lẻ
=> (a+1) x 2 không chia hết cho 4
Lời giải:
Gọi hai số chẵn liên tiếp là $2k+2$ và $2k+4$ $(k\in\mathbb{N}$
Tổng hai số chẵn liên tiếp là:
$2k+2+2k+4=4k+6=4(k+1)+2$ không chia hết cho $4$ do $2\not\vdots 4$
Do đó ta có đpcm.
coi số thứ nhất là a
số thứ 2 là a + 2
vì a là số chẵn nên a chia hết cho 2
coi a : 2 = n
ta có
=(a + a + 2 ) : 4
=( 2a + 2 ) : 2 :2
=(a + 1 ) : 2
=n + 1/2
Vậy 2 số chẵn liên tiếp không chia hết cho 4