K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 12 2016

\(A=\left(4x^2-4x+1\right)+\left(x+\frac{1}{4x}\right)+2013\ge2013+1=2014;;;.\)

A min = 2014 khi x =1/2 

25 tháng 1 2019

GTNN là 1/2

1 tháng 5 2017

M=(4x2-4x+1)+(x+\(\dfrac{1}{4x}\))+2013

=(2x-1)2+(x+\(\dfrac{1}{4x}\))+2013

x>0 nên áp dụng BĐT côsi cho 2 số không âm:

\(x+\dfrac{1}{4x}\ge2\sqrt{\dfrac{x}{4x}}=1\)

Dấu "=" xảy ra khi 4x2=1<=>x=\(\dfrac{1}{2}\)

(2x-1)2\(\ge\)0 với mọi x

Dấu "=" xảy ra khi x=\(\dfrac{1}{2}\)

=>M\(\ge\)0+1+2013=2014

=>Mmin=2014 khi và chỉ khi x=\(\dfrac{1}{2}\)

Vậy...

3 tháng 5 2020

Giúp mk vs các bn eii

3 tháng 5 2020

\(P=-\left(4x^2-4x+1+x+\frac{1}{4x}-2015\right)\)

\(=-\left[\left(2x-1\right)^2+\frac{\left(2x-1\right)^2}{4x}\right]+2014\)

\(P\le2014\forall x>0\)

Dấu "=" xảy ra <=> x=\(\frac{1}{2}\)

19 tháng 4 2017

\(M=4x^2-3x+\dfrac{1}{4x}+2017\)

\(=\left(4x^2-4x+1\right)+\left(x+\dfrac{1}{4x}\right)+2016\ge2017\)

19 tháng 4 2017

ghi rõ ra đk k z

2 tháng 11 2019

1.

Vì x>0 nên \(A=\frac{16x+4+\frac{1}{x}}{2}\)

Áp dụng bất đẳng thức Côsi cho 2 số dương

\(16x+\frac{1}{x}\ge2\sqrt{16x.\frac{1}{x}}=2.4=8\). Dấu "=" khi \(16x=\frac{1}{x}\Rightarrow x^2=\frac{1}{16}\Rightarrow x=\frac{1}{4}\)

\(A=\frac{16x+4+\frac{1}{x}}{2}\ge\frac{8+4}{2}=6\)

Vậy GTNN của A là 6 khi \(x=\frac{1}{4}\)

2.

\(B=\frac{1}{a}+\frac{1}{b}=\frac{a+b}{ab}=\frac{10}{ab}\)

Ta có: \(10=a+b\ge2\sqrt{ab}\Rightarrow\sqrt{ab}\le5\Rightarrow ab\le25\). Dấu "=" khi a = b = 5

\(\Rightarrow B=\frac{10}{ab}\ge\frac{10}{25}=\frac{2}{5}\)

Vậy GTNN của B là \(\frac{2}{5}\)khi a = b = 5