Bài 1 : Thực hiện phép tính
a) 2 + 2 x 5 + 2 x 9 + ... + 2 x 97
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
\(101\cdot125+101\cdot25-101\cdot50\)
\(=101\cdot\left(125+25-50\right)\)
\(=101\cdot100\)
\(=10100\)
Bài 2:
\(76\cdot115+56\cdot24+59\cdot24\)
\(=76\cdot115+24\cdot\left(56+59\right)\)
\(=76\cdot115+24\cdot115\)
\(=115\cdot\left(76+24\right)\)
\(=115\cdot100\)
\(=11500\)
Bài 1:
b: \(=\dfrac{x+3-4-x}{x-2}=\dfrac{-1}{x-2}\)
Bài 2:
a: \(=\dfrac{x+1}{2\left(x+3\right)}+\dfrac{2x+3}{x\left(x+3\right)}\)
\(=\dfrac{x^2+x+4x+6}{2x\left(x+3\right)}=\dfrac{x^2+5x+6}{2x\left(x+3\right)}=\dfrac{x+2}{2x}\)
d: \(=\dfrac{3}{2x^2y}+\dfrac{5}{xy^2}+\dfrac{x}{y^3}\)
\(=\dfrac{3y^2+10xy+2x^3}{2x^2y^3}\)
e: \(=\dfrac{x^2+2xy+x^2-2xy-4xy}{\left(x+2y\right)\left(x-2y\right)}=\dfrac{2x^2-4xy}{\left(x+2y\right)\cdot\left(x-2y\right)}=\dfrac{2x}{x+2y}\)
a) ( 3 + x )2 = x2 + 6x + 9
b) ( 5 - x )3 = 125 - 75x + 45x2 - x3
c) ( 2x - 1 )( x2 - x + 3 ) = 2x3 - 2x2 + 6x - x2 + x - 3 = 2x3 - 3x2 + 7x - 3
d) \(\frac{9}{x^2+3x}-\frac{3-x}{x}=\frac{9}{x\left(x+3\right)}+\frac{x-3}{x}\)
\(=\frac{9}{x\left(x+3\right)}+\frac{\left(x-3\right)\left(x+3\right)}{x\left(x+3\right)}\)
\(=\frac{9+x^2-9}{x\left(x+3\right)}=\frac{x^2}{x\left(x+3\right)}=\frac{x}{x+3}\)
a, \(\left(3+x\right)^2=9+6x+x^2\)
b, \(\left(5-x\right)^3=125-75x+15x^2-x^3\)
c, \(\left(2x-1\right)\left(x^2-x+3\right)=2x^3-2x^2+6x-x^2+x-3=2x^3-3x^2+7x-3\)
d, \(\frac{9}{x^2+3x}-\frac{3-x}{x}=\frac{9}{x\left(x+3\right)}-\frac{3-x}{x}=\frac{9}{x\left(x+3\right)}+\frac{\left(x-3\right)\left(x+3\right)}{x\left(x+3\right)}\)
\(=\frac{9+x^2-9}{x\left(x+3\right)}=\frac{x^2}{x\left(x+3\right)}\)
a.-1,75-(-\(\dfrac{1}{9}\)-2\(\dfrac{1}{8}\))
-1,75-\(\dfrac{1}{9}+\dfrac{17}{8}\)
\(-\dfrac{7}{4}-\dfrac{1}{9}+\dfrac{17}{8}\)
\(\dfrac{-126}{72}-\dfrac{8}{72}+\dfrac{153}{72}\)
=\(\dfrac{19}{72}\)
b.\(\dfrac{-1}{12}-\left(2\dfrac{5}{8}-\dfrac{1}{3}\right)\)
\(\dfrac{-1}{12}-\left(\dfrac{21}{8}-\dfrac{1}{3}\right)\)
\(\dfrac{-1}{12}-\dfrac{21}{8}+\dfrac{1}{3}\)
\(\dfrac{-2}{24}-\dfrac{63}{24}+\dfrac{64}{24}\)
=\(\dfrac{-1}{24}\)
Bài 1 :
a. 4497
b. 11484
Bài 2 :
a. 5425
b. Ko rõ dấu thứ 2 nếu dấu trừ thì đ/á ra âm ( lớp 5 chưa học )
Còn lại dấu cộng và đ/á là 100
Bài 3 :
a. x = 17 . 5 . ( 111 - 99 ) = 1020
b. x = ( 509 + 355 ) : ( 840 : 35 ) = 36
Bài 4 :
Gọi số cần tìm là ab \(\left(a,b\inℕ|9\ge a>0,9\ge b\ge0\right)\)
→ số mới là 5ab
Ta có vì số mới gấp 26 lần số ban đầu nên ta đc :
5ab : ab = 26
→ ( 500 + ab ) : ab = 26
→ 500 : ab + ab : ab = 26
→ 500 : ab + 1 = 26
→ 500 : ab = 25
→ ab = 20 ( thỏa mãn điều kiện )
Thử lại ta đc 520 : 20 = 26 ( luôn đúng )
Vậy số cần tìm là 20.
Xin tick ạ !!!
Bài 1:
a) \(\dfrac{19}{12}+\left|\dfrac{-5}{2}\right|+\left(\dfrac{3}{2}\right)^2=\dfrac{19}{12}+\dfrac{5}{2}+\dfrac{9}{4}\)
\(=\dfrac{19+5.6+9.3}{12}=\dfrac{76}{12}=\dfrac{19}{3}\)
b) \(\dfrac{2}{11}.\dfrac{16}{9}-\dfrac{2}{11}.\dfrac{7}{9}=\dfrac{2}{11}\left(\dfrac{16}{9}-\dfrac{7}{9}\right)=\dfrac{2}{11}.1=\dfrac{2}{11}\)
Bài 2:
Áp dụng t/c dtsbn:
\(\dfrac{a}{8}=\dfrac{b}{3}=\dfrac{a-b}{8-3}=\dfrac{55}{5}=11\)
\(\Rightarrow\left\{{}\begin{matrix}x=11.8=88\\b=11.3=33\end{matrix}\right.\)
Bài 4:
1: \(\left(x-1\right)\left(x^2+x+1\right)-x^3-6x=11\)
=>\(x^3-1-x^3-6x=11\)
=>-6x-1=11
=>-6x=11+1=12
=>\(x=\dfrac{12}{-6}=-2\)
2: \(16x^2-\left(3x-4\right)^2=0\)
=>\(\left(4x\right)^2-\left(3x-4\right)^2=0\)
=>\(\left(4x-3x+4\right)\left(4x+3x-4\right)=0\)
=>(x+4)(7x-4)=0
=>\(\left[{}\begin{matrix}x+4=0\\7x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=\dfrac{4}{7}\end{matrix}\right.\)
3: \(x^3-x^2-3x+3=0\)
=>\(\left(x^3-x^2\right)-\left(3x-3\right)=0\)
=>\(x^2\left(x-1\right)-3\left(x-1\right)=0\)
=>\(\left(x-1\right)\left(x^2-3\right)=0\)
=>\(\left[{}\begin{matrix}x-1=0\\x^2-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x^2=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\sqrt{3}\\x=-\sqrt{3}\end{matrix}\right.\)
4: \(\dfrac{x-1}{x+2}=\dfrac{x+2}{x+1}\)(ĐKXĐ: \(x\notin\left\{-2;-1\right\}\))
=>\(\left(x+2\right)^2=\left(x-1\right)\left(x+1\right)\)
=>\(x^2+4x+4=x^2-1\)
=>4x+4=-1
=>4x=-5
=>\(x=-\dfrac{5}{4}\left(nhận\right)\)
5: ĐKXĐ: \(x\notin\left\{0;-1\right\}\)
\(\dfrac{1}{x}+\dfrac{2}{x+1}=0\)
=>\(\dfrac{x+1+2x}{x\left(x+1\right)}=0\)
=>3x+1=0
=>3x=-1
=>\(x=-\dfrac{1}{3}\left(nhận\right)\)
6: ĐKXĐ: \(x\notin\left\{0;3\right\}\)
\(\dfrac{9-x^2}{x}:\left(x-3\right)=1\)
=>\(\dfrac{-\left(x^2-9\right)}{x\left(x-3\right)}=1\)
=>\(\dfrac{-\left(x-3\right)\left(x+3\right)}{x\left(x-3\right)}=1\)
=>\(\dfrac{-x-3}{x}=1\)
=>-x-3=x
=>-2x=3
=>\(x=-\dfrac{3}{2}\left(nhận\right)\)
Lời giải:
a. Đề lỗi.
b. $=5(1+2+3+...+19)=5.19(19+1):2=950$
c. $=(100-99)+(98-97)+....+(2-1)=\underbrace{1+1+...+1}_{50}=1.50=50$
d. Theo quy luật của tổng thì:
$=1+4+5+9+14+23+37+60+97=250$
Bài 1:
a)
\(9x^2-49=0\)
\(9x^2-49+49=0+49.\)
\(9x^2=49\)
\(\frac{9x^2}{9}=\frac{49}{9}\)
\(x^2=\frac{49}{9}\)
\(x=\sqrt{\frac{49}{9}}\)
\(x=\frac{\sqrt{49}}{\sqrt{9}}\)
\(x=\frac{7}{3}\)hay \(x=2,33333...\)
b)
\(\left(x-1\right)\left(x+2\right)-x-2=0.\)
\(x^2+x-2-x-2.\)
\(x^2+\left(x-x\right)-\left(2+2\right)=\)\(0\)
\(x^2-4=0\)
\(x=\sqrt{4}\)
\(x=2\)
Bài 2:
a)
\(\frac{x}{x}-3+9-\frac{6x}{x^2}-3x.\)
\(=1-3+9-\frac{6x}{x^2}-3x.\)
\(=1-3+9-\frac{6}{x}-3x.\)
\(=7-\frac{6}{x}-3x\)
b)
\(6x-\frac{3}{x}\div4x^2-\frac{1}{3x^2}\)
\(=6x-\frac{3}{x}\div\frac{4}{1}x^2-\frac{1}{3x^2}.\)
\(=6x-\frac{3}{x}\times\frac{1}{4}x^2-\frac{1}{3x^2}\)
\(=6x-\frac{3x^2}{x4}-\frac{1}{3x^2}\)
\(=6x-\frac{3x}{4}-\frac{1}{3x^2}\)
\(=\frac{6x}{1}-\frac{3x}{4}-\frac{1}{3x^2}\)
\(=\frac{72x^3-36x^3-12x^2}{12x^2}\)
\(=\frac{36-12x^2}{12x^2}\)
2+ 2. 5 + 2. 9 +...+ 2. 97
= 2( 1+ 5+ 9+...+97)
= 2\([\) ( 97 +1) . 25 : 2\(]\)
= 2. 1225
= 2450