x^2+3x+7
làm theo cách lớp 8, tính GTNN
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaadddddddddddddddddddddddddddddddddddddddddddđffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggghhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj
Câu a sai đề nên mik sửa lại nha
a) \(A=2019-\left(3x+8\right)^2\)
Ta có : \(\left(3x+8\right)^2\ge0=>2019-\left(3x+8\right)^2\le2019\)
Dấu '=' xảy ra khi và chỉ khi \(3x+8=0=>x=-\frac{8}{3}\)
Vậy \(A_{max}=2019\)khi \(x=-\frac{8}{3}\)
b) ta có : \(\left(x+2\right)^2\ge0 vs \left(2x-y\right)^2\ge0=>12-\left(x+2\right)^2+\left(2x-y\right)^2\le12\)
Dấu '=' xảy ra khi \(x+2=2x-y=0=>x=-2 , y=-4\)
Vậy ...
b) \(\left(6x-1\right)^2\ge0=>\left(6x-1\right)^2+2018\ge2018\)
Dấu "=" xảy ra khi \(6x-1=0=>x=\frac{1}{6}\)
Vậy ...
\(\left|2x+1\right|\ge0=>15+\left|2x+1\right|\ge15\)
Dấu "=" xảy ra khi \(2x+1=15=>x=7\)
Vậy ...
\(a,A=2019-\left(3x+8\right)\)
GTLN của biểu thức là 2019 khi \(3x+8=0\Rightarrow x=-\frac{8}{3}\)
\(b,B=12-\left(x+2\right)^2+\left(2x-y\right)^2\)
GTLN của biểu thức là 12 khi \(\orbr{\begin{cases}x+2=0\\2x-y=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-2\\2.\left(-2\right)-y=0\end{cases}\Rightarrow}x=-2;y=-4}\)
\(a,A=\left(6x-1\right)^2+2018\ge2018\)
Dấu bằng xảy ra khi \(6x-1=0\Rightarrow x=\frac{1}{6}\)
Vậy GTNN của A là 2018 khi x = 1/6
B ko hiểu
\(\frac{4x+1}{x^2+3}=\frac{x^2+4x+4-\left(x^2+3\right)}{x^2+3}=\frac{\left(x+2\right)^2}{x^2+3}-1\ge-1\)
Dấu "=' xảy ra khi x = -2
\(3-\left(\frac{43}{8}+x-\frac{173}{24}\right):\frac{50}{3}=2\)
\(3-\left(\frac{43}{8}+x-\frac{173}{24}\right)=2×\frac{50}{3}\)
\(3-\left(\frac{43}{8}+x-\frac{173}{24}\right)=\frac{100}{3}\)
\(\left(\frac{43}{8}+x-\frac{173}{24}\right)=3-\frac{100}{3}\)
\(\left(\frac{43}{8}+x-\frac{173}{24}\right)=-\frac{91}{3}\)
\(\frac{43}{8}+x=-\frac{91}{3}+\frac{173}{24}\)
\(\frac{43}{8}+x=-\frac{185}{8}\)
\(x=-\frac{185}{8}-\frac{43}{8}\)
\(x=-\frac{57}{2}\)
vậy \(x=-\frac{57}{2}\)
nhầm
\(3-\left(\frac{43}{8}+x-\frac{173}{24}\right):\frac{50}{3}=2\)
\(\left(\frac{43}{8}+x-\frac{173}{24}\right):\frac{50}{3}=3-2\)
\(\left(\frac{43}{8}+x-\frac{173}{24}\right):\frac{50}{3}=1\)
\(\left(\frac{43}{8}+x-\frac{173}{24}\right)=1×\frac{50}{3}\)
\(\left(\frac{43}{8}+x-\frac{173}{24}\right)=\frac{50}{3}\)
\(\frac{43}{8}+x=\frac{50}{3}+\frac{173}{24}\)
\(\frac{43}{8}+x=\frac{191}{8}\)
\(x=\frac{191}{8}-\frac{43}{8}\)
\(x=\frac{37}{2}\)
vậy \(x=\frac{37}{2}\)
\(3-4+5-6+7-8+9\)
\(=\left(3+7\right)-\left(4+6\right)+\left(5+9-8\right)\)
\(=10-10+6\)
\(=6\)
Ta có : \(\left(x-y\right)^2=x^2-2xy+y^2=x^2-2.2+y^2\)
\(\Rightarrow x^2+y^2=4\)
\(\Rightarrow x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)=\left(x+y\right)\left[\left(x^2+y^2\right)-xy\right]\)
\(=4\left(4-2\right)=8\)
\(x^2+3x+7\)
\(=x^2+2.x.\dfrac{3}{2}+\left(\dfrac{3}{2}\right)^2+\dfrac{19}{4}\)
\(=\left(x+\dfrac{3}{2}\right)^2+\dfrac{19}{4}\ge\dfrac{19}{4}\forall x\in R\)
Dấu bằng xảy ra khi và chỉ khi \(x+\dfrac{3}{2}=0\)
\(\Leftrightarrow x=\dfrac{-3}{2}\)
\(x^2+3x+7=x^2+3x+\dfrac{9}{4}+\dfrac{19}{4}=\left(x+\dfrac{3}{2}\right)^2+\dfrac{19}{4}\ge\dfrac{19}{4}\)
- Dấu "=" xảy ra \(\Leftrightarrow x+\dfrac{3}{2}=0\Leftrightarrow x=-\dfrac{3}{2}\).
- Vậy GTNN của biểu thức trên là \(\dfrac{19}{4}\)