K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 6 2015

\(x\in\phi\)

6 tháng 6 2015

Đặt \(\sqrt{x}=a;\sqrt{x+5}=b\) (a, b >=0)

=> \(a^2+b+a+ab=20\)

<=> (a+1)(a+b)=20

Với a, b nguyên => thuộc Ư(20)=1,2,4,5,10,20

Với a, b ko nguyên thì chịu

18 tháng 11 2022

a: ĐKXĐ: x>=0

b: \(\Leftrightarrow\dfrac{2\sqrt{2}-2\sqrt{2-\sqrt{x}}+\sqrt{2x}-\sqrt{x\left(2-\sqrt{x}\right)}+2\sqrt{2}+2\sqrt{2+\sqrt{x}}-\sqrt{2x}-\sqrt{x\left(2+\sqrt{x}\right)}}{2-2+\sqrt{x}}=\sqrt{2}\)

\(\Leftrightarrow4\sqrt{2}-2\sqrt{x\left(\sqrt{x}+2\right)}=\sqrt{2x}\)

\(\Leftrightarrow\sqrt{4x\left(\sqrt{x}+2\right)}=4\sqrt{2}-\sqrt{2x}\)

\(\Leftrightarrow4x\left(\sqrt{x}+2\right)=32-16\sqrt{x}+2x\)

\(\Leftrightarrow4x\sqrt{x}+8x-32+16\sqrt{x}-2x=0\)

=>\(x\in\left\{0;1.2996\right\}\)

3 tháng 11 2019

ĐK:\(x\ge3\)

PT \(\Leftrightarrow\frac{-6x}{\sqrt{x-3}+\sqrt{7x-3}}=\sqrt{5x-2}\)(nhân liên hợp)

Đến đây ta có VT < 0 với mọi \(x\ge3\) mà VP > 0. Vậy pt vô nghiệm.

14 tháng 12 2018

DDK : \(x\ge1\)

\(\sqrt{x-1}-\sqrt{5x-1}=\sqrt{3x-2}\)

\(\Leftrightarrow\sqrt{x-1}=\sqrt{3x-2}+\sqrt{5x-1}\)

\(\Rightarrow x-1=3x-2+5x-2+2\sqrt{\left(3x-2\right)\left(5x-1\right)}\)

\(\Leftrightarrow x-1-3x+2-5x+2=2\sqrt{15x^2-3x-10x+2}\)

\(\Leftrightarrow3-7x=2\sqrt{15x^2-13x+2}\)

\(\Rightarrow9-42x+49x^2=4\left(15x^2-13x+2\right)\)

\(\Leftrightarrow9-42x+49x^2=60x^2-52x+8\)

\(\Leftrightarrow11x^2-10x-1=0\)

\(\Leftrightarrow11x^2-11x+x-1=0\)

\(\Leftrightarrow\left(11x+1\right)\left(x-1\right)=0\)

Giải nốt nha .

2 tháng 7 2015

\(\Leftrightarrow\left(\sqrt[3]{x+1}+\sqrt[3]{x-1}\right)^3=\left(\sqrt[3]{5x}\right)^3\)

\(\Leftrightarrow x+1+x-1+3\sqrt[3]{x-1}.\sqrt[3]{x+1}\left(\sqrt[3]{x+1}+\sqrt[3]{x-1}\right)=5x\)

\(\Rightarrow3\sqrt[3]{x^2-1}.\sqrt[3]{5x}=3x\) (chưa chắc tồn tại x nên khi thay \(\sqrt[3]{x+1}+\sqrt[3]{x-1}=\sqrt[3]{5x}\) phải dùng dấu suy ra)

\(\Leftrightarrow\sqrt[3]{5x^3-5x}=x\Leftrightarrow5x^3-5x=x^3\Leftrightarrow4x^3-5x=0\)

\(\Leftrightarrow x\left(4x^2-5\right)=0\)

\(\Leftrightarrow x=0\text{ hoặc }x=\frac{\sqrt{5}}{2}\text{ hoặc }x=-\frac{\sqrt{5}}{2}\)

Thử lại thấy các số trên đều thỏa.

Vậy tập nghiệm của phương trình là \(S=\left\{0;\frac{\sqrt{5}}{2};-\frac{\sqrt{5}}{2}\right\}\)

15 tháng 5 2017

đề sai r,,,,,,cái kia phải là x^2-x+1 chứ

nếu đúng như tôi thì bạn chỉ cần cho cái 2 vào trong căn rồi nhân liên hợp là ok

27 tháng 5 2017

yes..thanks

24 tháng 10 2017

mk ko bt 123

24 tháng 11 2019

\(\sqrt{x-\sqrt{x-2}}+\sqrt{x+\sqrt{x-2}}=3\)

\(\Leftrightarrow2x+2\sqrt{\left(x-\sqrt{2-x}\right)\left(x+\sqrt{x-2}\right)}=9\)

\(\Leftrightarrow2\sqrt{\left(x-\sqrt{x-2}\right)\left(x+\sqrt{x+2}\right)}=9-2x\)

\(\Leftrightarrow4\left(x-\sqrt{x-2}\right)\left(x+\sqrt{x-2}\right)=\left(9-2x\right)^2\)

\(\Leftrightarrow4x^2-4x+8=81-36x+4x^2\)

\(\Leftrightarrow-4x+8=81-36x\)

\(\Leftrightarrow-4x=81-36x-8\)

\(\Leftrightarrow-4x=-36x+73\)

\(\Leftrightarrow-4x+36x=73\)

\(\Leftrightarrow32x=73\)

\(\Leftrightarrow x=\frac{73}{32}\)

Vậy: nghiệm phương trình là: \(\left\{\frac{73}{32}\right\}\)

24 tháng 11 2019

Lỗi sai ngu người nhất của Chihiro.Quên viết ĐKXĐ ak em

\(\sqrt{x-\sqrt{x-2}}+\sqrt{x+\sqrt{x-2}}=3\)

\(ĐKXĐ:x\ge2\)

Bình phương 2 vế của pt ta được

\(2x+2\sqrt{\left(x-\sqrt{x-2}\right)\left(x+\sqrt{x-2}\right)}=9\)

\(\Leftrightarrow2\sqrt{x^2-x+2}=9-2x\)

\(\Leftrightarrow\hept{\begin{cases}9-2x\ge0\Leftrightarrow\frac{9}{2}\ge x\\4\left(x^2-x+2\right)=81-36x+4x^2\left(2\right)\end{cases}}\)

\(\left(2\right)\Leftrightarrow32x-73=0\Leftrightarrow x=\frac{73}{32}\left(tmDK\right)\)

Vậy \(S=\left\{\frac{73}{32}\right\}\)

p/s:học hỏi đi con.