K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 3 2022

Ta có: |x+y-2|≥0\(\forall\)x, y

Dấu "=" xảy ra \(\Leftrightarrow x+y-2=0\)

\(\left(2x-1\right)^{2022}\ge0\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x=\dfrac{1}{2}\)

\(\Rightarrow A=\left|x+y-2\right|+\left(2x-1\right)^{2022}\ge0\)

Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x+y-2=0\\x=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{2}+y-2=0\\x=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{3}{2}\\x=\dfrac{1}{2}\end{matrix}\right.\)

Vậy \(A_{min}=0\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=\dfrac{3}{2}\end{matrix}\right.\)

 

16 tháng 11 2018

\(2a^2+\frac{1}{a^2}+\frac{b^2}{4}=4\Leftrightarrow\left(a^2+\frac{1}{a^2}-2\right)+\left(a^2+\frac{b^2}{4}-ab\right)=4-ab-2\)

\(\Leftrightarrow\left(a-\frac{1}{a}\right)^2+\left(a-\frac{b}{2}\right)^2=2-ab\)

\(VF=2-ab=\left(a-\frac{1}{a}\right)^2+\left(b-\frac{b}{2}\right)^2\ge0\)

Hay \(ab\le2\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}a=\frac{1}{a}\\b=\frac{b}{2}\end{cases}}\Leftrightarrow\orbr{\begin{cases}\left(a;b\right)=\left(1;\frac{1}{2}\right)\\\left(a;b\right)=\left(-1;-\frac{1}{2}\right)\end{cases}}\)

16 tháng 11 2018

ủa bạn tìm giá trị nhỏ nhất của biểu thức S=ab+2019 mà 

24 tháng 3 2019

\(A=|x+1|+5\ge5\forall x\)

=> Min A = 5 tại \(|x+1|=0\Rightarrow x=-1\)

\(B=\frac{x^2+15}{x^2+3}=1+\frac{12}{x^2+3}\)

Ta có: \(x^2+3\ge3\forall x\)

Min x2 + 3 = 3 tại x = 0

Khi đó: Max B = 1+ 12/3 = 5 tại x = 0

=.= hk tốt!!

|x+1 lớn hơn hoặc bằng 0 

=> |x+1|+5 lớn hơn hoặc bằng 5

Dấu = xảy ra khi x+1=0 <=> x=-1

Vậy Min A = 5 khi x=-1 

24 tháng 11 2018

\(\hept{\begin{cases}\left|5x-2\right|\ge0\\\left|3y-9\right|\ge0\end{cases}\Rightarrow4-\left|5x-2\right|-\left|3y-9\right|\le4}\)

dấu = xảy ra khi và chỉ khi 

\(\hept{\begin{cases}\left|5x-2\right|\ge0\\\left|3y-9\right|\ge0\end{cases}\Rightarrow\hept{\begin{cases}5x=2\\3y=9\end{cases}\Rightarrow}\hept{\begin{cases}x=\frac{2}{5}\\y=3\end{cases}}}\)

Vậy max A =4 khi và chỉ khi \(\hept{\begin{cases}x=\frac{2}{5}\\y=3\end{cases}}\)

\(B=\frac{3}{2+5\left|2x^2-1\right|}\)

\(\left|2x^2-1\right|\ge0\Rightarrow5\left|2x^2-1\right|\ge0\Rightarrow2+5\left|2x^2-1\right|\ge2\)

\(\Rightarrow B\le\frac{3}{2}\)

dấu = xảy ra khi |2x2-1|=0

=> \(x=\pm\frac{1}{\sqrt{2}}\)

Vậy max B=\(\frac{3}{2}\)khi và chỉ khi \(x=\pm\frac{1}{\sqrt{2}}\)

24 tháng 11 2018

Ta có: \(A=4-\left|5x-2\right|-\left|3y+9\right|\)

\(=4-\left(\left|5x-2\right|-\left|3y+9\right|\right)\)

A đạt GTLN (Max) khi \(\left(\left|5x-2\right|-\left|3y+9\right|\right)\) bé nhất

Mà \(\left|5x-2\right|\ge0\)

\(\left|3y+9\right|\ge0\)

Nên \(\left(\left|5x-2\right|-\left|3y+9\right|\right)\ge0\)

Suy ra \(A=4-\left(\left|5x-2\right|-\left|3y+9\right|\right)\le4\)

Dấu "=" xảy ra \(\Leftrightarrow\left|5x-2\right|=\left|3y+9\right|=0\Leftrightarrow\orbr{\begin{cases}x=\frac{2}{5}\\y=-\frac{9}{3}\end{cases}}\)

Vậy \(M_{max}=4\Leftrightarrow\orbr{\begin{cases}x=\frac{2}{5}\\y=-\frac{9}{3}\end{cases}}\)

10 tháng 12 2017

\(D=\frac{1}{x^2+5x+14}=\frac{1}{\left(x^2+2.\frac{5}{2}x+\frac{5}{2}^2\right)+\frac{31}{4}}=\frac{1}{\left(x+\frac{5}{2}\right)^2+\frac{31}{4}}\le\frac{1}{\frac{31}{4}}=\frac{4}{31}\)

Dấu "=" xảy ra khi \(\left(x+\frac{5}{2}\right)^2=0\Rightarrow x=-\frac{5}{2}\)

Vậy GTLN của \(D=\frac{4}{31}\)tại \(x=-\frac{5}{2}\)

10 tháng 12 2017

\(D=\frac{1}{x^2+5x+14}=\frac{1}{\left(x^2+2.\frac{5}{2}x+\frac{25}{4}\right)+\frac{31}{4}}=\frac{1}{\left(x+\frac{5}{2}\right)^2+\frac{31}{4}}\)

D đạt giá trị lớn nhất khi và chỉ khi \(x+\frac{5}{2}=0\leftrightarrow x=\frac{-5}{2}\)

Vậy \(D=\frac{4}{31}\leftrightarrow x=\frac{-5}{2}\)