tìm số x xó 2 chữ số, biết chữ số hàng chục là 4 và nếu đổi chỗ cho hàng chục và hàng đơn vị cho nhau ta sẽ được số mới có giá trị bằng x cộng với 1/5x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số cần tìm là \(\overline{xy}\)
+) Do hiệu của 3 lần chữ số hàng chục với 2 lần chữ số hàng đơn vị là 11 nên ta có phương trình \(3x-2y=11\left(1\right)\)
+) Lại có, nếu đổi chữ số hàng chục và hàng đơn vị cho nhau, ta sẽ được 1 số mới nhỏ hơn số cũ 18 đơn vị, hay
\(\overline{xy}-\overline{yx}=18\Leftrightarrow\left(10x+y\right)-\left(10y+x\right)=18\Leftrightarrow9x-9y=18\Leftrightarrow x-y=2\left(2\right)\)
Từ (1) và (2), ta có hệ phương trình:
\(\left\{{}\begin{matrix}3x-2y=11\\x-y=2\end{matrix}\right.\Leftrightarrow}\left\{{}\begin{matrix}3x-2y=11\\2x-2y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=7\\x-y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=7\\y=5\end{matrix}\right.\)
Vậy số cần tìm là 75
Gọi số cần tìm là \(\overline{ab}\) (0<a<10; 0<b<10) => 3a - 2b = 11 (1)
Khi đổi chỗ hai chữ số cho nhau được số mới là \(\overline{ba}\)
Do số mới nhỏ hơn số cũ 18 đơn vị => \(\overline{ab}\) - \(\overline{ba}\) = 18
⇔ 10a + b - 10b - a = 18
⇔ 9a - 9b = 18 (2)
Từ (1) và (2) ta có hệ phương trình:\(\left\{{}\begin{matrix}3a-2b=11\\9a-9b=18\end{matrix}\right.\)⇔\(\left\{{}\begin{matrix}9a-6b=33\\9a-9b=18\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}-3b=-15\\9a-9b=18\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}a=7\\b=5\end{matrix}\right.\) (tm)
Vậy số cần tìm là 75
gọi số cần tìm là ab
tổng của chữ số hàng chục và hai lần chữ số hàng đơn vị là 12
=> a+2b=12
Nếu đổi chỗ hai chữ số cho nhau thì sẽ được một số mới lớn hơn số ban đầu 27 đơn vị
suy ra ba-ab=27
=>10b+a-10a-b=27
=>-9a+9b=27
giải hệ
suy ra a=2 và b=5
suy ra số cần tìm là 25
Gọi số cần tìm là: abcd (a ;b;c;d là các chữ số và a khác 0 )
theo bài cho ta có:
abcd = cba + 1908
cba là số có 3 chữ số nên cba < 1000 => cba + 1908 < 1000 + 1908 = 2908
=> abcd < 2908
Vậy a = 1 hoặc a = 2
+) Nếu a = 1 ta có phép tính
=> d = 8 + 1 = 9; 0 + b = c ; 9 + c = b . Vô lí
Vậy a = 2 . ta có phép tính sau:
d = 0
ta có: 1908 + cb2 = 2bc0
1908 + c x 100 + b x 10 + 2 = 2000 + b x 100 + c x 10 + 0 (Cùng bớt cả 2 bên cho b x 10 và c x 10)
1910 + c x 90 = 2000 + b x 90
c x 90 = 90 + b x 90
c = 1 + b
+) Chọn b = 0 => c = 1 => ta có số 2010
+) b = 1 => c =2 => ta có số 2120
Tương tự, chọn đến b = 8 =.> c= 9 => ta có số 2890
Vậy có tất cả 9 số thỏa mãn : 2010; 2120; 2230; 2340; 2450; 2560; 2670; 2780; 2890
Gọi số tự nhiên đó là ab(ab>14). Theo đề bài ta có:
Chữ số hàng đơn vị lớn hơn chữ số hàng chục là 4 đơn vị nên ta có phương trình: \(-a+b=4\left(1\right)\)
Nếu đổi chỗ 2 chữ số cho nhau thì được số mới bằng \(\dfrac{17}{5}\) số cũ nên ta có phương trình: \(ba-ab=\dfrac{17}{5}\Leftrightarrow10b+a-10a-b=\dfrac{17}{5}\Leftrightarrow9b-9a=\dfrac{17}{5}\Leftrightarrow-45a+45b=17\left(2\right)\)
Từ (1) và (2) ta có hệ phương trình:
\(\left\{{}\begin{matrix}-a+b=4\\-45a+45b=17\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-45a+45b=180\left(3\right)\\-45a+45b=17\left(2\right)\end{matrix}\right.\) Trừ từng vế của (3) cho (2) ta được:
\(\Rightarrow0a+0b=180-17=163\) Vô lí \(\Rightarrow\) Ko có a,b
Vậy ko tồn tại số tự nhiên thỏa mãn đề bài
= > Ta có các số : 31 ; 62 ; 93
Mà : 31 - 13 = 18 ( loại )
62 - 26 = 26 ( chọn )
93 - 39 = 54 ( loại )
Vậy = > Số đó là : 62
gọi số cần tìm là ab
tổng của chữ số hàng chục và hai lần chữ số hàng đơn vị là 10
=> b+2a=10
Nếu đổi chỗ hai chữ số cho nhau thì sẽ được một số mới nhở hơn 18 đơn vị
suy ra ab-ba=18
=>10a+b-10b-a=18
=>9a-9b=18 => a-b=2
giải hệ
suy ra a=4 và b=2
suy ra số cần tìm là 42
Gọi số cần tìm là ab (a,b khác 0)
Ta có hệ pt:
{2a+b=10
ab−ba=18
⇒{2a+b=10
10a+b−(10b+a)=18
⇒{b=10−2a
9a−9b=18
⇒{b=10−2a
a−b=2
⇒{b=10−2a
a−10+2a=2
⇒{b=10−2a
a=4
⇒{b=2
a=4
Vậy số cần tìm là 42