\(\sqrt{x+2}+1=\sqrt{x+4}+\sqrt{x+1}\)
nhớ ghi đầy đủ lời giải với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{2x^2+x+9}+\sqrt{2x^2-x+1}=x+4\)
\(\Leftrightarrow\sqrt{2x^2+x+9}-\left(\frac{1}{2}x+3\right)+\sqrt{2x^2-x+1}-\left(\frac{1}{2}x+1\right)=0\)
\(\Leftrightarrow\frac{2x^2+x+9-\left(\frac{1}{2}x+3\right)^2}{\sqrt{2x^2+x+9}+\frac{1}{2}x+3}+\frac{2x^2-x+1-\left(\frac{1}{2}x+1\right)^2}{\sqrt{2x^2-x+1}+\frac{1}{2}x+1}=0\)
\(\Leftrightarrow\frac{\frac{1}{4}x\left(7x-8\right)}{\sqrt{2x^2+x+9}+\frac{1}{2}x+3}+\frac{\frac{1}{4}x\left(7x-8\right)}{\sqrt{2x^2-x+1}+\frac{1}{2}x+1}=0\)
\(\Leftrightarrow\frac{1}{4}x\left(7x-8\right)\left(\frac{1}{\sqrt{2x^2+x+9}+\frac{1}{2}x+3}+\frac{1}{\sqrt{2x^2-x+1}+\frac{1}{2}x+1}\right)=0\)
Dễ thấy: \(\frac{1}{\sqrt{2x^2+x+9}+\frac{1}{2}x+3}+\frac{1}{\sqrt{2x^2-x+1}+\frac{1}{2}x+1}>0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\7x-8=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{8}{7}\end{cases}}\)
ĐKXĐ:....
Đặt \(\sqrt{2x^2+x+9}=a;\sqrt{2x^2-x+1}=b\)\(\left(a,b>0\right)\)
\(\Rightarrow a^2-b^2=2x^2+x+9-2x^2+x-1=2x+8=2\left(x+4\right)\)
Từ pt ta có:
\(a+b=\dfrac{a^2-b^2}{2}\)\(\Leftrightarrow2\left(a+b\right)=\left(a-b\right)\left(a+b\right)\)
\(\Leftrightarrow\left(a+b\right)\left(a-b-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a+b=0\left(loại\right)\\a-b-2=0\end{matrix}\right.\)\(\Leftrightarrow a-b=2\)
\(\Leftrightarrow\sqrt{2x^2+x+9}-\sqrt{2x^2-x+1}=2\)
Đến đoạn này giải bằng phương pháp bình phương cả 2 vế, tìm được các giá trị, đối chiếu xem thoả mãn ĐKXĐ không và kết luận tập nghiệm.
\(ĐKXĐ:\) \(\hept{\begin{cases}\sqrt{x}-1\ne0\\\sqrt{x}\ge0\\x-\sqrt{x}+1\ne0\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x\ne1\\x\ge0\end{cases}}\) ( vì \(x-\sqrt{x}+1>0\) )
Ta có:
\(A=x-\frac{2x-2\sqrt{x}}{\sqrt{x}-1}+\frac{x\sqrt{x}+1}{x-\sqrt{x}+1}+1=x-\frac{2\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}+\frac{\sqrt{x^3}+1}{x-\sqrt{x}+1}+1\)
\(=x-2\sqrt{x}+\frac{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{x-\sqrt{x}+1}+1=x-2\sqrt{x}+\sqrt{x}+1+1\)
nên \(A=x-\sqrt{x}+2=x-2.\frac{1}{2}\sqrt{x}+\frac{1}{4}+\frac{7}{4}=\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{7}{4}\ge\frac{7}{4}\)
Vậy, \(A_{min}=\frac{7}{4}\) khi \(x=\frac{1}{4}\)
Xem hộ mình nhanh nhanh nha có lần mình trả lời của bạn mà bạn ko thèm để ý luôn
\(ĐKXĐ:x>3\)
\(\frac{\sqrt{x-3}}{\sqrt{2x+1}}=2\)
\(\Leftrightarrow\sqrt{x-3}=2\sqrt{2x+1}\)
\(\Leftrightarrow\sqrt{x-3}=\sqrt{8x+4}\)
\(\Leftrightarrow x-3=8x+4\)
\(\Leftrightarrow-7x=7\)
\(\Leftrightarrow x=-1\)
Vậy nghiệm duy nhất của phương trình là 1