1/1x2 + 1/2x3 + 1/4x5 + 1/5x 6 +...+1/y x (y+1)= 100/101
tìm y
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
y=\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}\)
y=\(1-\frac{1}{6}\)
y=\(\frac{5}{6}\)
\(\Rightarrow y=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}\)
\(\Rightarrow y=1-\frac{1}{6}=\frac{5}{6}\)
Vậy \(y=\frac{5}{6}\)
\(\dfrac{1}{1x2}+\dfrac{1}{2x3}+\dfrac{1}{3x4}+\dfrac{1}{4x5}+...+\dfrac{1}{yx\left(y+1\right)}=\dfrac{100}{101}\\ < =>1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{y}-\dfrac{1}{y+1}=\dfrac{100}{101}\\ < =>1-\dfrac{1}{y+1}=\dfrac{100}{101}\\ < =>\dfrac{1}{y+1}=1-\dfrac{100}{101}=\dfrac{1}{101}\\ =>y=100\)
\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{4.5}+......+\dfrac{1}{y.\left(y+1\right)}=\dfrac{100}{101}\)
\(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{5}-\dfrac{1}{5}+\dfrac{1}{y.\left(y+1\right)}=\dfrac{100}{101}\)
\(\dfrac{1}{y.\left(y+1\right)}=\dfrac{100}{101}\)
`y.(y+1)= 1 : 100/101`
`y.(y+1)=101/100`
`y^2 + y = 100/101`
`=> y=100`