2/3.5+2/5.7+2/7.9+...+2/2023.2025
tính biểu thức
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(p=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{2009.2011}\)
\(p=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{2009}-\frac{1}{2011}\)
\(p=\frac{1}{3}-\frac{1}{2011}\)
\(p=\frac{2011}{6033}-\frac{3}{6033}\)
\(p=\frac{2008}{6033}\)
\(\dfrac{2^3}{3\cdot5}+\dfrac{2^3}{5\cdot7}+...+\dfrac{2^3}{101\cdot103}\)
\(=2^2\left(\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+...+\dfrac{2}{101\cdot103}\right)\)
\(=4\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{101}-\dfrac{1}{103}\right)\)
\(=4\cdot\left(\dfrac{1}{3}-\dfrac{1}{103}\right)\)
\(=4\cdot\dfrac{100}{309}=\dfrac{400}{309}\)
2/3.5 + 2/5.7 + 2/7.9 + ... + 2/41.43
= 1/3 - 1/5 + 1/5 - 1/7 + 1/7 - 1/9 + ... + 1/41 - 1/43
= 1/3 - 1/43
= 40/129
ỦNG HỘ NHA
\(A=1-\frac{2}{3.5}-\frac{2}{5.7}-\frac{2}{7.9}-...-\frac{2}{63.65}\)
\(A=1-\left(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{63-65}\right)\)
\(A=1-\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{63}-\frac{1}{65}\right)\)
\(A=1-\left(\frac{1}{3}-\frac{1}{65}\right)\)
\(A=1-\frac{62}{195}\)
\(A=\frac{133}{195}\)
\(A=\frac{2}{3.5}+\frac{2}{5.7}+......+\frac{2}{99.100}\)
\(A=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+.....+\frac{1}{99}-\frac{1}{100}\)
\(A=\frac{1}{3}-\frac{1}{100}=\frac{97}{300}\)
Ta có \(A=\dfrac{2}{1.3}-\dfrac{2}{2.4}+\dfrac{2}{3.5}-\dfrac{2}{4.6}+\dfrac{2}{5.7}-\dfrac{2}{6.8}+\dfrac{2}{7.9}-\dfrac{2}{8.10}+\dfrac{2}{9.11}-\dfrac{2}{10.12}\)
\(\Rightarrow A=\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+\dfrac{2}{9.11}\right)-\left(\dfrac{2}{2.4}+\dfrac{2}{4.6}+\dfrac{2}{6.8}+\dfrac{2}{8.10}+\dfrac{2}{10.12}\right)\) \(\Rightarrow A=\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{11}\right)-\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{12}\right)\) \(\Rightarrow A=\left(1-\dfrac{1}{11}\right)-\left(\dfrac{1}{2}-\dfrac{1}{12}\right)\)
\(\Rightarrow A=1-\dfrac{1}{11}-\dfrac{1}{2}+\dfrac{1}{12}\)
\(\Rightarrow A=\dfrac{9}{22}+\dfrac{1}{12}\)
\(\Rightarrow A=\dfrac{65}{132}\)
Mà \(\dfrac{65}{132}< 1\) \(\Rightarrow A< 1\)
Vậy \(A< 1\)
a.
\(M=1.\left[\frac{1}{3}-\frac{1}{5}+.....\frac{1}{97}-\frac{1}{99}\right]\)
\(M=\frac{1}{3}-\frac{1}{99}=\frac{32}{99}\)
b.
\(N=\frac{3}{2}.\left[\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{197}-\frac{1}{199}\right]\)
\(N=\frac{3}{2}.\left[\frac{1}{5}-\frac{1}{199}\right]=\frac{291}{995}\)
mk đầu tiên nha bạn
Ta có S=2/3+2/3.5+2/5.7+2/7.9+...+2/97.99
=2/3+1/3-1/5+1/5-1/7+1/7-1/9+...+1/97-1/99
=2/3+1/3+(1/5-1/5)+(1/7-1/7)+...+(1/97-1/97)+1/99
=1+0+0+0+...+0+1/99
=1+1/99
=100/99
Mà 100/99>1.Suy ra S>1
Vậy S>1
Lời giải:
Gọi biểu thức là $A$ thì:
$A=\frac{5-3}{3.5}+\frac{7-5}{5.7}+\frac{9-7}{7.9}+...+\frac{2025-2023}{2023.2025}$
$=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{2023}-\frac{1}{2025}$
$=\frac{1}{3}-\frac{1}{2025}=\frac{674}{2025}$