Bộ GD&ĐT cấm dạy thêm: Giải pháp nào dành cho nhà trường và giáo viên?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chứng Minh Rằng
1/2! + 2/3! + 3/4!+...+n/(n+1)! < 1
\(\dfrac{1}{2!}+\dfrac{2}{3!}+\dfrac{3}{4!}+...+\dfrac{n}{\left(n+1\right)!}\)
\(=\dfrac{2-1}{2!}+\dfrac{3-1}{3!}+\dfrac{4-1}{4!}+...+\dfrac{\left(n+1\right)-1}{\left(n+1\right)!}\)
\(=\dfrac{2}{2!}-\dfrac{1}{2!}+\dfrac{3}{3!}-\dfrac{1}{3!}+...+\dfrac{\left(n+1\right)}{\left(n+1\right)!}-\dfrac{1}{\left(n+1\right)!}\)
\(=1-\dfrac{1}{2!}+\dfrac{1}{2!}-\dfrac{1}{3!}+\dfrac{1}{3!}+...+\dfrac{1}{n!}-\dfrac{1}{\left(n+1\right)!}\)
( Vì \(\dfrac{3}{3!}=\dfrac{1}{2!};\dfrac{4}{4!}=\dfrac{1}{3!};...;\dfrac{n+1}{\left(n+1\right)!}=\dfrac{1}{n!}\))
\(=1-\dfrac{1}{\left(n+1\right)!}< 1\)
Đặt \(S\left(n\right)=\dfrac{1}{2!}+\dfrac{2}{3!}+\dfrac{3}{4!}+...+\dfrac{n}{\left(n+1\right)!}\)
Ta có \(S\left(1\right)=\dfrac{1}{2!}=\dfrac{1}{2}=1-\dfrac{1}{2!}\)
\(S\left(2\right)=S\left(1\right)+\dfrac{2}{3!}=\dfrac{1}{2}+\dfrac{1}{3}=\dfrac{5}{6}=1-\dfrac{1}{3!}\)
\(S\left(3\right)=S\left(2\right)+\dfrac{3}{4!}=\dfrac{5}{6}+\dfrac{1}{8}=\dfrac{23}{24}=1-\dfrac{1}{4!}\)
Từ đây, ta có \(S\left(n\right)=1-\dfrac{1}{\left(n+1\right)!}\) và hiển nhiên \(S\left(n\right)< 1\) do \(\dfrac{1}{\left(n+1\right)!}>0\)
Vậy ta có đpcm
Bài 1: Chứng minh rằng A<B<1 biết:
A = 3/1.4+3/4. … . 3/n.(n+1).
B = 1/^2+1/3^2+1/4^2+ … + 1/n^2.
Bài 2: Cho S = 3/10+3/11+3/12+3/13+3/14. Chứng minh rằng 1<S<2. Từ đó suy ra S không phải là số tự nhiên.
Bài 3: Chứng minh rằng 3/5<S<4/5 với S = 1/31+1/32+1/33+…+1/60.
Các bạn nhớ giải đầy đủ và theo cách của Toán lớp 6 nâng cao nhé!
Chứng minh rằng luôn tồn tại số tự nhiên n để 1+1/2+/1/3+...+1/n>1000
Cho M = 1/101+/102+...+1/200. Chứng minh rằng : 5/8<M<3/4
Chứng minh rằng với mọi n≥2 ta có:
1/2^3+1/3^3+...+1/n^3<1/4
Chứng minh rằng : 1 + 1/2 +1/3 + 1/4 + ... + 1/2^n-1 < n ( n thuộc N > 2 )
Chứng minh rằng
1/2+1/3√2+1/4√3+......+1/(n+1)√n <2
M=1/2*3/4*5/6*....*99/100
N=2/3*4/5*6/7*...*100/101
a, chứng minh rằng: M<N
b, tính M*N
c, chứng minh rằng: M<1/10
kí hiệu n! = 1.2.3.4....(n-1).n
chứng minh rằng A=1/2!+2/3!+3/4!+......+2015/2016!<1
ta có:1/2!<1
2/3!<1
......
2015/2016!<1
=>A=1/2!+2/3!+3/4!+......+2015/2016! luôn luôn <1
Ko biét làm
chứng minh rằng
d, D= 1/2^3 + 1/3^3 + 1/4^3 +...+ 1/n^3<1/4
Bài 1:Chứng minh rằng
a)M=1/22+1/32+1/42+...+1/n2<1 với n thuộc N, n>2
b)P=1/42+1/62+...+1/2n2<1/4 với n thuộc N, n>2
Bài 2:Chứng minh rằng
1/26+1/27+1/28+...+1/50=1-1/2+1/3-1/4+...+1/49-1/50
Bài 3:Cho
M=1/2.3/4.5/6...99/100
N=2/3.4/5.6/7...100/101
Bài 4:Chứng tỏ rằng
1/22+1/32+...+1/1002<1
1 like dành cho ai trả lời đúng, nhanh nhất :)
nhanh giúp mình
1) Tính: A= 2/4.7-3/5.9+2/7.10-3/9.13+..+2/301.304-3/401.405
2) Chứng minh rằng với mọi n thuộc số tự nhiên, n lớn hơn hoặc bằng 2: 3/9.14+3/14.19+...+3/(5n-1).(5n+4)<1/15
3) a) Cho A=9/5^2+9/11^2+9/17^2+...+9/305^2. Chứng minh A<3/4
b) Cho C=4/3+7/3^2+10/3^3+...+3n+1/3^n với số tự nhiên khác 0. Chứng minh rằng C<11/4
4) Tính: a) =1/2+1/2^2+1/2^3+...+1/2^100
b) B=1/3-1/3^2+1/3^3-1/3^4+...+1/3^99-1/3^100
5) So sánh: (1-1/2).(1-1/3).(1-1/4). ... .(1-1/20) với 1/21
1)A=987
\(\dfrac{1}{2!}+\dfrac{2}{3!}+\dfrac{3}{4!}+...+\dfrac{n}{\left(n+1\right)!}\)
\(=\dfrac{2-1}{2!}+\dfrac{3-1}{3!}+\dfrac{4-1}{4!}+...+\dfrac{\left(n+1\right)-1}{\left(n+1\right)!}\)
\(=\dfrac{2}{2!}-\dfrac{1}{2!}+\dfrac{3}{3!}-\dfrac{1}{3!}+...+\dfrac{\left(n+1\right)}{\left(n+1\right)!}-\dfrac{1}{\left(n+1\right)!}\)
\(=1-\dfrac{1}{2!}+\dfrac{1}{2!}-\dfrac{1}{3!}+\dfrac{1}{3!}+...+\dfrac{1}{n!}-\dfrac{1}{\left(n+1\right)!}\)
( Vì \(\dfrac{3}{3!}=\dfrac{1}{2!};\dfrac{4}{4!}=\dfrac{1}{3!};...;\dfrac{n+1}{\left(n+1\right)!}=\dfrac{1}{n!}\))
\(=1-\dfrac{1}{\left(n+1\right)!}< 1\)
Đặt \(S\left(n\right)=\dfrac{1}{2!}+\dfrac{2}{3!}+\dfrac{3}{4!}+...+\dfrac{n}{\left(n+1\right)!}\)
Ta có \(S\left(1\right)=\dfrac{1}{2!}=\dfrac{1}{2}=1-\dfrac{1}{2!}\)
\(S\left(2\right)=S\left(1\right)+\dfrac{2}{3!}=\dfrac{1}{2}+\dfrac{1}{3}=\dfrac{5}{6}=1-\dfrac{1}{3!}\)
\(S\left(3\right)=S\left(2\right)+\dfrac{3}{4!}=\dfrac{5}{6}+\dfrac{1}{8}=\dfrac{23}{24}=1-\dfrac{1}{4!}\)
Từ đây, ta có \(S\left(n\right)=1-\dfrac{1}{\left(n+1\right)!}\) và hiển nhiên \(S\left(n\right)< 1\) do \(\dfrac{1}{\left(n+1\right)!}>0\)
Vậy ta có đpcm