cho tam giác abc vuông tại a đường cao ah trên cạnh ac lấy điểm d sao cho ac=3ad tria tia đối của tia ha lấy điểm e sao cho ha=3he gọi f là giao điểm của ed và bc a)tính hf/hc b) cmr dc62/df^2=bc/bf
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài giải:
Gọi \(B'\) là điểm đối xứng với \(B\) qua \(A\)
Khi đó \(A\) là trung điểm của \(BB'\)
Tam giác \(BCB'\) có đường trung tuyến \(CA\), \(D\in AC\) và \(AC=3AD\) nên D là trọng tâm của \(\Delta BCB'\)
Do đó \(B'D\) đi qua trung điểm \(F\) của \(BC\)
Từ đó suy ra: \(CF=\frac{1}{2}BC\)
Ta lại có: \(AH=3HE\) nên \(AE=\frac{4}{3}AH\)
Mặt khác: \(AB.AC=AH.BC\)
Do đó: \(AB.\frac{2}{3}AC=\frac{2}{3}AH.BC\)
\(\Rightarrow AB.CD=\frac{4}{3}AH.\frac{1}{2}BC=AE.CF\)
\(\Rightarrow\frac{AB}{CF}=\frac{AE}{CD}\)
Mà: \(\widehat{BAE}=\widehat{FCD}\) ( cùng phụ với \(\widehat{HAC}\) )
\(\Rightarrow\Delta BAE\) đồng dạng vs \(\Delta FCD\) \(\left(c.g.c\right)\)
\(\Rightarrow\widehat{BEA}=\widehat{FDC}\) ( cặp góc tương ứng )
Ta lại có: \(\widehat{ADB}=\widehat{ADB'}=\widehat{FDC}\)
\(\Rightarrow\widehat{ADB}=\widehat{BEA}\)
\(\Rightarrow\) Tứ giác \(ABED\) nội tiếp.
Mà \(\widehat{BAD}=90^0\) nên suy ra \(\widehat{BED}=90^0\)
Chắc thế =)) Thử tham khảo, sai bảo mk sửa !
a: BC=căn 15^2+20^2=25cm
AH=15*20/25=12cm
b: Xét ΔABD có
AH vừa là đường cao, vừa là trung tuyến
=>ΔABD cân tại A
=>tan ADH=tan ABD=tan ABC=AC/AB=4/3
Xét ΔABC vuông tại A có AH là đường cao
nên AH^2=HB*HC=HD*HC
Bài 1 : Kẻ ON//BC và DM//BC ( N và M thuộc AC )
=> ON//DM
Xét tam giác MED có : OD=OE và ON//DM => EN=NM (1)
Mặt khác ta có DMBC là hình thang cân nên DB=CM
Mà DB=AE => AE=CM (2)
Cộng vế theo vế 1 và 2 ta có : AE+EN=CM+MN => AN=NC
Xét tam giác AHC có : ON//HC ( vì ON//BC ) và AN=NC => AN=NC ( t/c của đg trung bình ) => đpcm
Bài 1 : Bài giải
Bài 2 : Bài giải
Bài 3 : Bài giải
Xét 2 tam giác \(\Delta ABI\text{ và }\Delta EBI\) có :
\(BA=BE\) ( gt )
\(BD\) : cạnh chung
\(\widehat{B_1}=\widehat{B_2}\) ( BD là đường phân giác của \(\widehat{B}\) )
\(\Rightarrow\text{ }\Delta ABD=\Delta EBD\text{ }\left(c.g.c\right)\)
\(\Rightarrow\text{ }AD=DE\text{ }\left(2\text{ cạnh tương ứng }\right)\)
....
Tự làm tiếp nha ! Mình bận rồi !
a: Xét tứ giác ABDC có
M là trung điểm chung của AD và BC
\(\widehat{BAC}=90^0\)
Do đó: ABDC là hình chữ nhật
b: Xét ΔADE có
M,H lần lượt là trung điểm của AD,AE
=>MH là đường trung bình
=>MH//DE
=>DE vuông góc AE
Xét tứ giác ABED có \(\widehat{ABD}=\widehat{AED}=90^0\)
=>ABED là tứ giác nội tiếp
=>\(\widehat{BDE}=\widehat{EAB}\)
=>\(\widehat{BDE}=\widehat{HAB}=\widehat{C}\)
=>\(\widehat{BDE}=\widehat{C}\)
mà \(\widehat{ACB}=\widehat{ADB}\)
nên \(\widehat{BDE}=\widehat{ADB}\)
=>DB là phân giác của \(\widehat{ADE}\)
a: Xét ΔBEA vuông tại E và ΔBEN vuông tại E co
BA=BN
BE chung
=>ΔBEA=ΔBEN
b: Xét ΔBAD có
BH vừa là đường cao, vừa là đường trung tuyến
=>ΔBAD cân tại B
c: Xét ΔNAB có
AH,BE là đường cao
AH cắt BE tại K
=>K là trực tâm
=>NK vuông góc AB
=>NK//AC