Tìm giá trị lớn nhất của A biết : A=2017-(|x+2015|+|x-2016|)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do |x+2015| lớn hoặc = 0 với mọi x nên A bé hơn hoặc bằng -2016
Dấu "=" xảy ra khi và chỉ khi x+2015=0
=> x=-2015
Ta có:
\(A=\left|x-2015\right|+\left|x-2016\right|+\left|x-2017\right|\)
\(=\left|x-2015\right|+\left|x-2016\right|+\left|2017-x\right|\)
\(\ge x-2015+0+2017-x=2\)
Dấu = khi \(\begin{cases}x-2015\ge0\\x-2016=0\\x-2017\le0\end{cases}\)\(\Rightarrow\begin{cases}x\ge2015\\x=2016\\x\le2017\end{cases}\)\(\Rightarrow x=2016\)
Vậy MinA=2 khi x=2016
Đặt A = |x-2015|+|2016-x| +|x-2017|
=> A = |x-2015|+|x-2016| +|2017-x|
Ta có |x-2015| \(\ge\)x - 2015 (với mọi x)
|x-2016| \(\ge\)0 (với mọi x)
|2017-x| \(\ge\) 2017 - x (với mọi x)
=> |x-2015|+|x-2016| +|2017-x| \(\ge\)(x - 2015) + 0 + (2017 - x) (với mọi x)
=> A \(\ge\)2 (với mọi x)
=> A đạt GTNN là 2 khi
\(\hept{\begin{cases}\text{|x-2015|\ge0}\\\text{|x-2016|=0}\\\text{|2017-x|\ge0}\end{cases}}\Leftrightarrow\hept{\begin{cases}x-2015\ge0\\x-2016=0\\2017-x\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge2015\\x=2016\\x\le2017\end{cases}\Rightarrow x=2016}\)
Vậy GTNN của A là 2 tại x = 2016
Lời giải:
Áp dụng BĐT $|a|+|b|\geq |a+b|$ (để cm BĐT này bạn có thể tìm trên mạng, rất nhiều)
$|x-2015|+|x-2017|=|x-2015|+|2017-x|\geq |x-2015+2017-x|=2$
$|x-2016|\geq 0$ theo tính chất trị tuyệt đối
$\Rightarrow P\geq 2+0=2$
Vậy $P_{\min}=2$. Giá trị này đạt được tại $(x-2015)(2017-x)\geq 0$ và $x-2016=0$
Hay $x=2016$
trăm năm trong cõi người ta
ai ai cũng phải thở ra hít vào
trăm năm bất kể người nào
ai ai cũng phải hít vào thở ra
rất xa như nước cu-ba
người ta còn phải thở ra hít vào
rất gần ngay như nước lào
người ta cũng phải hít vào thở ra
vậy nên trong cõi người ta
không ai không phải thở ra hít vào
vậy nên bất kể người nào
không ai không phải hit vào thở ra...
các bạn thấy có hay ko, vs nha