Tím các cặp số nguyên x,y thỏa mãn:
\(\sqrt{4x^2}+\sqrt{y^2}=8\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow y^2=x^2+4x+5\left(y\ge0\right)\\ \Leftrightarrow y^2-\left(x+2\right)^2=1\\ \Leftrightarrow\left(y-x-2\right)\left(y+x+2\right)=1\)
Vì \(x,y\in Z\Leftrightarrow\left(y-x-2\right)\left(y+x+2\right)=1\cdot1=\left(-1\right)\left(-1\right)\)
\(\left\{{}\begin{matrix}y-x-2=1\\y+x+2=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y-x=3\\y+x=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=1\end{matrix}\right.\left(tm\right)\)
\(\left\{{}\begin{matrix}y-x-2=-1\\y+x+2=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y-x=1\\y+x=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=-1\end{matrix}\right.\left(ktm\right)\)
Vậy \(\left(x;y\right)=\left(-2;1\right)\)
ĐK : \(x;y\in Z;y\ge0\)
\(\sqrt{x^2-2x+13}=y\)
\(\Leftrightarrow x^2-2x+13=y^2\)
\(\Leftrightarrow\left(x^2-2x+1\right)+12=y^2\)
\(\Leftrightarrow\left(x-1\right)^2+12=y^2\)
\(\Leftrightarrow\left(x-1\right)^2-y^2=-12\)
\(\Leftrightarrow\left(x-y-1\right)\left(x+y-1\right)=-12\) đến đây lm tiếp
Chứng minh rằng tồn tại một cặp số duy nhất (x, y) thỏa mãn phương trình:
\(x^2-4x+y-6\sqrt{y}+13=0\)
Đề bài sai
Chỉ tồn tại duy nhất cặp x;y thỏa mãn pt khi đề bài là:
\(x^2-4x+y-6\sqrt{y}+13=0\)
ĐKXĐ: ...
\(\Leftrightarrow\left(x^2-4x+4\right)+\left(y-6\sqrt{y}+9\right)=0\)
\(\Leftrightarrow\left(x-2\right)^2+\left(\sqrt{y}-3\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\\sqrt{y}-3=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=9\end{matrix}\right.\)
Vậy có duy nhất cặp số (x;y)=(2;9) thỏa mãn phương trình
\(\sqrt{4x+2\sqrt{x}+1}\le\sqrt{4x+\dfrac{1}{2}\left(2^2+x\right)+1}=\sqrt{\dfrac{9x}{2}+3}\)
\(=\dfrac{1}{\sqrt{21}}.\sqrt{21}.\sqrt{\dfrac{9x}{2}+3}\le\dfrac{1}{2\sqrt{21}}\left(21+\dfrac{9x}{2}+3\right)=\dfrac{1}{2\sqrt{21}}\left(\dfrac{9x}{2}+24\right)\)
Tương tự và cộng lại:
\(A\le\dfrac{1}{2\sqrt{21}}\left(\dfrac{9}{2}\left(x+y+z\right)+72\right)=3\sqrt{21}\)
\(A_{max}=3\sqrt{21}\) khi \(x=y=z=4\)
\(A=1\sqrt{4x+2\sqrt{x}+1}+1.\sqrt{4y+2\sqrt{y}+1}+1\sqrt{4z+2\sqrt{z}+1}\)
\(\le\sqrt{\left(1+1+1\right)\left(4\left(x+y+z\right)+2\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)+3\right)}\)
\(=\sqrt{3.\left[51+\dfrac{4\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)}{2}\right]}\)
\(\le\sqrt{3.\left[51+\dfrac{x+y+z+12}{2}\right]}\)
\(=\sqrt{189}\)
Dấu "=" xảy ra <=> x = y = z = 4