K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 12 2016

Ta có

2a4 + 2b4 + 8 \(\ge\)2ab + 4a + 4b

<=> (2a4 - 4a2 + 2) + (2b4 - 4b2 + 2) + (2a2 - 4a + 2) + (2b2 - 4b + 2) + (a2 - 2ab + b2) + a2 + b2\(\ge\)0

<=> 2(a2 - 1)2 + 2(b2 - 1)2 + 2(a - 1)2 + 2(b - 1)2 + (a - b)2 + a2 + b2 \(\ge\)0 (đúng)

AH
Akai Haruma
Giáo viên
30 tháng 3 2021

Lời giải:

Kiểu như bạn muốn biến đổi $a^4-b^4$ về dạng có liên quan đến $a+b,ab$ ấy hả?

$a^4-b^4=(a^2-b^2)(a^2+b^2)=(a-b)(a+b)[(a+b)^2-2ab]$

Nếu $a^4\geq b^4$ thì: $a^4-b^4=\sqrt{(a-b)^2}(a+b)[(a+b)^2-2ab]$

$=\sqrt{(a+b)^2-4ab}(a+b)[(a+b)^2-2ab]$

Nếu $a^4< b^4$ thì $a^4-b^4=-\sqrt{(a+b)^2-4ab}(a+b)[(a+b)^2-2ab]$

26 tháng 7 2021

Đây nhé! Tích giúp c nhaundefined

26 tháng 7 2021

batngo

4 tháng 10 2017

theo bài ta có:

a + b + c = 0

=> a = -(b + c)

=> a2 = [-(b + c)]2

=> a2 = b2 + 2bc + c2

=> a2 - b2 - c2 = 2bc

=> ( a2 - b2 - c2)2 = (2bc)2

=> a4 + b4 + c4 - 2a2c2 + 2b2c2 - 2a2c2 = 4b2c2

=> a4 + b4 + c4 = 2a2c2 + 2b2c2 + 2a2c2

=> 2(a4 + b4 + c4) = a4 + b4 + c4 + 2a2c2 + 2b2c2 + 2a2c2

=> 2(a4 + b4 + c4) = (a2 + b2 + c2)2

=> 2(a4 + b4 + c4) = 1

=> a4 + b4 + c4 = \(\dfrac{1}{2}\)

4 tháng 10 2017

Đề viết sai rồi bạn

Với a+b+c=0

CMR : a4+b4+c4=2(ab+bc+ac)2

4 tháng 11 2018

\(a+b=5\Leftrightarrow a^2+2ab+b^2=25\)

\(\Leftrightarrow a^2+2.4+b^2=25\Leftrightarrow a^2+b^2=17\)

\(\Leftrightarrow\left(a^2+b^2\right)^2=289\Leftrightarrow a^4+2\left(ab\right)^2+b^4=289\)

\(\Leftrightarrow a^4+b^4+2.4^2=289\Leftrightarrow a^4+b^4=257\)

10 tháng 4 2021

\(a^4+b^4-a^3b-ab^3=a^3\left(a-b\right)-b^3\left(a-b\right)=\left(a-b\right)\left(a^3-b^3\right)=\left(a-b\right)\left(a-b\right)\left(a^2+ab+b^2\right)=\left(a-b\right)^2\left(a^2+ab+b^2\right)\)

Có: \(\left\{{}\begin{matrix}\left(a-b\right)^2\ge0\\a^2+ab+b^2>0\end{matrix}\right.\)

\(\Rightarrow a^4+b^4-a^3b-ab^3\ge0\)

\(\Rightarrow a^4+b^4\ge a^3b+ab^3\)

10 tháng 4 2021

Áp dụng BĐT cosi với 2 số không âm:

`a^4+b^4+b^4+b^4>=4\root4{a^4b^12}=4|ab^3|>=4ab^3`

Hoàn toàn tương tự:

`b^4+a^4+a^4+a^4>=4a^3b`

`=>a^4+b^4+b^4+b^4+b^4+a^4+a^4+a^4>=4ab^3+4a^3b`

`<=>4(a^4+b^4)>=4(ab^3+a^3b)`

`<=>a^4+b^4>=ab^3+a^3b`

29 tháng 11 2017

Đáp án đúng : B

9 tháng 10 2019

Đáp án B