Cho đoạn thẳng AB và trung điểm O của nó,trên cùng một nửa mặt phẳng có bờ AB,vẽ hai tia Ax và By vuông góc với AB.Một góc vuông đỉnh O cắt Ax tại C,cắt By tại D.
a,AC+BD=CD
b,CO là tia phân giác của góc ACD
Có hình luôn được không ạ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, xét tgACO và tgBEO có: gCAO=gEBO = 90 độ
OA=OB (O là trung điểm của AB)
gAOC = gBOE (hai góc đối đỉnh)
=>tgACO=tgEBO(g.c.g)=>AC=BE;OC=OE (hai cạnh tương ứng)
xét tgCOD và tgEOD có: OC=OE (cmt)
gCOD=gEOD=90độ
OD là cạnh chung
=>tgCOD=tgEOD (c.g.c)
=> CD= DE (hai cạnh tương ứng)
mà DE=DB+BE =>CD=DB+BE
mà BE=AC(cmt)=>CD=AC+BD
b, xét tgCOJ và tgEOJ có : OC=OE (cmt)
gCOJ=gEOJ = 90độ
OJ là cạnh chung
=>tgCOJ=tgEOJ (c.g.c)=>gJCO=gJEO;JC=JE
xét tgCDJ và tgEDJ có: CD=DE (cmt)
DJ là cạnh chung
CJ=EJ (cmt)
=>tgCDJ=tgEDJ (c.c.c)
=>gDCJ=gDEJ
mà gDCJ = gJCO (CJ là tia phân giác của gOCD)
gJCO=gJEO (cmt)
=>gDEJ = gJEO =>EJ là tia phân giác của gBEO
Năm sau tui thi THPT quốc gia rồi :v, không biết bạn Hoàng Hà còn cần câu này khum nhỉ?
CM tg OAC đồng dạng tg OBD ( g - g )
=> OA.OB = AC.BD
mà OA = OB
=> OA\(^2\)= AC.BD
tg OAC vuông tại A có :
OC2 = AC\(^2\)+ OA2
tg OBD vuông tại B có :
OD2 = BD2 + OB2
tg OBD vuông tại O có :
CD2 = OC2 + OD2 = AC\(^2\)+ OA2 + BD2 + OB2 = AC2 + 2OA2 + BD2
= AC2 + 2AC.BD + BD2
= ( AC + BD ) 2
=> CD = AC + BD
CHO TICK NHA !
a/ Từ O đựng đường thẳng vuông góc với CD cắt CD tại E
Xét tg vuông BOD có
\(\widehat{BOD}+\widehat{BDO}=90^o\) (1)
Mà \(\widehat{AOC}+\widehat{BOD}=\widehat{ABO}-\widehat{COD}=180^o-90^o=90^o\) (2)
Từ (1) (2) \(\Rightarrow\widehat{AOC}=\widehat{BDO}\)
Xét tg vuông AOC và tg vuông BDO có
\(\widehat{AOC}=\widehat{BDO}\)
=> tg AOC đồng dạng với tg BDO (g.g.g)\(\Rightarrow\dfrac{AC}{BO}=\dfrac{AO}{BD}\Rightarrow AC.BD=AO.BO\)
Xét tg vuông COD có
\(OC^2=CE.CD\) (Trong tg vuông bình phương 1 cạnh góc vuông bằng tích giữa hình chiếu cạnh góc vuông đó trên cạnh huyền với cạnh huyền)
\(OD^2=DE.CD\) (Lý do như trên)
Xét tg vuông AOC có \(OC^2=AC^2+AO^2\) (Pitago)
Xét tg vuông BDO có \(OD^2=BD^2+BO^2\) (Pitago)
\(\Rightarrow AC^2+AO^2=CE.DE\) (3)
\(\Rightarrow BD^2+BO^2=DE.CD\) (4)
Cộng 2 vế của (3) và (4) có
\(AC^2+BD^2+2.AC.BD+AO^2+BO^2-2.AC.BD=CD\left(CE+DE\right)\)
\(\left(AC+BD\right)^2+AO^2+BO^2-2.AC.BD=CD^2\)
Mà AC.BD=AO.BO (cmt)
\(\Rightarrow\left(AC+BD\right)^2+\left(AO-BO\right)^2=CD^2\)
Mà AO=BO
\(\Rightarrow\left(AC+BD\right)^2=CD^2\Rightarrow AC+BD=CD\) (đpcm)
b/