K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 10 2014

vậy bạn tự làm là đk mà

18 tháng 10 2014

dat x-y=z

suy ra {3z^4+2z^3-5z^2}:z^2

dat nhan tu chung la z^2

=z^2(3z^2+2z-5)

minh chi bt the thoi

a, 0

b,0

c, 0

mình ko chắc lắm

25 tháng 1 2019

a/ (x+y)(x+y)

   =x+y.x+y

   =x+x.y+y

   =2.x.2.y

    =2.(x+y)

16 tháng 7 2016

Do \(x+y+z=0\) \(\Rightarrow x+y=-z\)

Ta có: \(\left(x^3+y^3\right)+z^3=\left(x+y\right)^3+z^3-3xy\left(x+y\right)\)

\(=\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)z+z^2\right]-3xy\left(-z\right)=3xyz\)(do \(x+y+z=0\)).

16 tháng 7 2016

ta có:

(x+y+z)3=0

x^3+y^3+z^3+3(x+y)(y+z)(z+x)=0 (1)

mà x+y+z=0 suy ra x+y= -z; y+z= -x; z+x= -y (2)

từ (1) và (2) suy ra

x^3+y^3+z^3+3(-z)(-x)(-y)=0

x^3+y^3+z^3-3xyz=0

x^3+y^3+z^3=3xyz(đpcm)

5 tháng 10 2018

hello bạn 

5 tháng 10 2018

a)

x=3      y=0

b)x=1     y=1

c)x=0           y=7 mình không biết có đúng ko nữa bạn suy nghĩ xem nhé #kết bạn với mk nha# cho hỏi người lạ minhf trả lời thế có k ko <3

24 tháng 12 2021

Cá bạn ơi giúp mình với mình đang cần gấp lắm ạ 

26 tháng 5 2021

\(\left\{{}\begin{matrix}2\left(\dfrac{x^3}{y^2}+\dfrac{y^3}{x^2}\right)=\sqrt[4]{8\left(x^4+y^4\right)}+2\sqrt{xy}\left(1\right)\\16x^5-20x^3+5\sqrt{xy}=\sqrt{\dfrac{y+1}{2}}\left(2\right)\end{matrix}\right.\).

ĐKXĐ: \(xy>0;y\ge-\dfrac{1}{2}\).

Nhận thấy nếu x < 0 thì y < 0. Suy ra VT của (1) âm, còn VP của (1) dương (vô lí)

Do đó x > 0 nên y > 0.

Với a, b > 0 ta có bất đẳng thức \(\left(a+b\right)^4\le8\left(a^4+b^4\right)\).

Thật vậy, áp dụng bất đẳng thức Cauchy - Schwarz ta có:

\(\left(a+b\right)^4\le\left[2\left(a^2+b^2\right)\right]^2=4\left(a^2+b^2\right)^2\le8\left(a^4+b^4\right)\).

Dấu "=" xảy ra khi và chỉ khi a = b.

Áp dụng bất đẳng thức trên ta có:

\(\left(\sqrt[4]{8\left(x^4+y^4\right)}+2\sqrt{xy}\right)^4\le8\left[8\left(x^4+y^4\right)+16x^2y^2\right]=64\left(x^2+y^2\right)^2\)

\(\Rightarrow\left(\sqrt[4]{8\left(x^4+y^4\right)}+2\sqrt{xy}\right)^2\le8\left(x^2+y^2\right)\). (3)

Lại có \(4\left(\dfrac{x^3}{y^2}+\dfrac{y^3}{x^2}\right)^2=4\left(\dfrac{x^6}{y^4}+2xy+\dfrac{y^6}{x^4}\right)\). (4) 

Áp dụng bất đẳng thức AM - GM ta có \(\dfrac{x^6}{y^4}+xy+xy+xy+xy\ge5x^2;\dfrac{y^6}{x^4}+xy+xy+xy+xy\ge5y^2;3\left(x^2+y^2\right)\ge6xy\).

Cộng vế với vế của các bđt trên lại rồi tút gọn ta được \(\dfrac{x^6}{y^4}+2xy+\dfrac{y^6}{x^4}\ge2\left(x^2+y^2\right)\). (5)

Từ (3), (4), (5) suy ra \(4\left(\dfrac{x^3}{y^2}+\dfrac{y^3}{x^2}\right)^2\ge\left(\sqrt[4]{8\left(x^4+y^4\right)}+2\sqrt{xy}\right)^2\Rightarrow2\left(\dfrac{x^3}{y^2}+\dfrac{y^3}{x^2}\right)\ge\sqrt[4]{8\left(x^4+y^4\right)}+2\sqrt{xy}\).

Do đó đẳng thức ở (1) xảy ra nên ta phải có x = y.

Thay x = y vào (2) ta được:

\(16x^5-20x^3+5x=\sqrt{\dfrac{x+1}{2}}\). (ĐK: \(x>0\))

PT này có một nghiệm là x = 1 mà sau đó không biết giải ntn :v

 

 

3 tháng 7 2019

\(\left|3-2x\right|+\left|4y+5\right|=0\)

Do \(\left|3-2x\right|\ge0;\left|4y+5\right|\ge0\Rightarrow\left|3-2x\right|+\left|4y+5\right|\ge0\)

Dấu "=" xảy ra khi \(x=\frac{2}{3};y=-\frac{5}{4}\)

Mấy bài khác tương tự

3 tháng 7 2019

|x - y| + |y + 9/25| \(\le\)0

Ta có: |x - y| \(\ge\)\(\forall\)x,y

           |y + 9/25| \(\ge\) 0 \(\forall\)y

=> |x - y| + |y + 9/25|  \(\ge\)\(\forall\)x, y

Dấu "=" xảy ra khi : \(\hept{\begin{cases}x-y=0\\y+\frac{9}{25}=0\end{cases}}\) => \(x=y=-\frac{9}{25}\)

Vậy ...

(x  + y)2012 + 2013|y - 1| = 0

Ta có: (x + y)2012 \(\ge\)\(\forall\)x, y

      2013|y - 1| \(\ge\)\(\forall\)y

=> (x + y)2012 + 2013|y - 1| \(\ge\)\(\forall\)x,y

Dấu "=" cảy ra khi : \(\hept{\begin{cases}x+y=0\\y-1=0\end{cases}}\) => \(\hept{\begin{cases}x=-y\\y=1\end{cases}}\) => \(\hept{\begin{cases}x=-1\\y=1\end{cases}}\)

Vậy ...

18 tháng 3 2016

a)y2 = 7 => y = \(\sqrt{7}hoặc-\sqrt{7}\)

Nếu y = \(\sqrt{7}\) thì :

x2y3 = 5 . y.y

x2y3 = 5.7.\(\sqrt{7}\) = 35\(\sqrt{7}\)

Nếu y = -\(\sqrt{7}\)  thì :

x2y3 = 5.7. (-\(\sqrt{7}\)) = -35\(\sqrt{7}\)

b) x2y= 5.7 = 35

x6y6 = (x2y2)3 = 353 = 42875

c) làm tương tự câu (a).  Chia x làm 2 trường hợp bằng căng 5 hoặc cặng 5 rồi thế vô tính nhé bạn!

29 tháng 7 2017

(x-3)^11=(x-3)^7

(x-3)^11-(x-3)^7=0

(x-3)^7[(x-3)^4-1)]=0

\(\Rightarrow\orbr{\begin{cases}\left(x-3\right)^7=0\\\left(x-3\right)^4-1=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x-3=0\\\left(x-3\right)^4=1\end{cases}}\)\(\Rightarrow\)x=3; x=2; x=4

Vậy x=3 hoặc x=2 hoặc x=4

29 tháng 7 2017

Ta có (x-3)^11 = (x-3)^7

  <=>  \(\hept{\begin{cases}x-3=0\\x-3=1\\x-3=-1\end{cases}}\)

   <=> \(\hept{\begin{cases}x=3\\x=4\\x=2\end{cases}}\)