Chứng minh :
\(16x^2+8x+100>0\)
(giúp)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=16x^2+8x+3=\left(4x\right)^2+2.4x.1+1+2\)
\(=\left(4x+1\right)^2+2>0\forall x\)
anh ơi, vậy là sai đề hả anh, chứ đề kêu chứng minh phương trình vô nghiệm mà em thấy anh ghi x=2
Bài 2:
a: =>(4x-1)2=0
=>4x-1=0
hay x=1/4
b: =>(x+4)(x-2)=0
=>x=-4 hoặc x=2
c: =>x2+2x+1+y2+2y+1=0
\(\Leftrightarrow\left(x+1\right)^2+\left(y+1\right)^2=0\)
=>x=-1và y=-1
1) \(\left(x-3\right)\left(x-5\right)+44\)
\(=x^2-3x-5x+15+44\)
\(=x^2-8x+59\)
\(=x^2-2.x.4+4^2+43\)
\(=\left(x-4\right)^2+43\ge43>0\)
\(\rightarrowĐPCM.\)
2) \(x^2+y^2-8x+4y+31\)
\(=\left(x^2-8x\right)+\left(y^2+4y\right)+31\)
\(=\left(x^2-2.x.4+4^2\right)-16+\left(y^2+2.y.2+2^2\right)-4+31\)
\(=\left(x-4\right)^2+\left(y+2\right)^2+11\ge11>0\)
\(\rightarrowĐPCM.\)
3)\(16x^2+6x+25\)
\(=16\left(x^2+\dfrac{3}{8}x+\dfrac{25}{16}\right)\)
\(=16\left(x^2+2.x.\dfrac{3}{16}+\dfrac{9}{256}-\dfrac{9}{256}+\dfrac{25}{16}\right)\)
\(=16\left[\left(x+\dfrac{3}{16}\right)^2+\dfrac{391}{256}\right]\)
\(=16\left(x+\dfrac{3}{16}\right)^2+\dfrac{391}{16}>0\)
-> ĐPCM.
4) Tương tự câu 3)
5) \(x^2+\dfrac{2}{3}x+\dfrac{1}{2}\)
\(=x^2+2.x.\dfrac{1}{3}+\dfrac{1}{9}-\dfrac{1}{9}+\dfrac{1}{2}\)
\(=\left(x+\dfrac{1}{3}\right)^2+\dfrac{7}{18}>0\)
-> ĐPCM.
6) Tương tự câu 5)
7) 8) 9) Tương tự câu 3).
Ta có: \(-16x^2-8x-3\)
\(=-\left(16x^2+8x+1+2\right)\)
\(=-\left(4x+1\right)^2-2< 0\forall x\)
\(=\left(4x\right)^2-2.4x.\frac{1}{2}+\frac{1}{4}+\frac{11}{4}=\left(4x-\frac{1}{2}\right)^2+\frac{11}{4}\)
Vì\(\left(4x-\frac{1}{2}\right)^2\ge0\Rightarrow\left(4x-\frac{1}{2}\right)^2+\frac{11}{4}>0\) Với mọi x
Vậy 16x^2-4x+3 > 0
\(P=16x^2+8x+2=\left(16x^2+8x+1\right)+1=\left(4x+1\right)^2+1\)
Do \(\left\{{}\begin{matrix}\left(4x+1\right)^2\ge0\\1>0\end{matrix}\right.\) ;\(\forall x\)
\(\Rightarrow P=\left(4x+1\right)^2+1>0;\forall x\) (đpcm)
4x2 - 8x + 7
= (2x)2 - 2.2x.2 + 22 - 4 + 7
= (2x - 2)2 + 3
Vì (2x - 2)2 ≥ 0 ∀ x ⇒ (2x - 2)2 + 3 ≥ 3 ∀ x
Vậy (2x - 2)2 + 3 > 0 hay 4x2 - 8x + 7 > 0
\(16x^2+8x+100=\left(4x\right)^2+2.4x.1+1^2+99\\ =\left(4x+1\right)^2+99>=99>0\left(DPCM\right)\)
\(16x^2+8x+100>0\)
\(\Leftrightarrow\left(4x\right)^2+2.4x.1+1+99>0\)
\(\Leftrightarrow\left(4x+1\right)^2+99>0\left(\forall x\in R\right)\)