cmr bt sau khong phu thuoc vaogia tri cua bien(x-1)^3-(x-1)(x^2+x+1)-3(x-1)x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=3x^2-x+6x-2-3x^2-3x-2x+7\)
\(=5\)
Vậy A không phụ thuộc vào x
\(B=\left(2x\right)^2-3^2-3x-4x^2+3x+1\)
\(=4x^2-9-3x-4x^2+3x+1\)
\(=-8\)
Vậy B không phụ thuộc vào biến x
A = ( x + 2 )( 3x - 1 ) - x( 3x + 3 ) - 2x + 7
= 3x2 + 5x - 2 - 3x2 - 3x - 2x + 7
= 5
Vậy A không phụ thuộc vào biến ( đpcm )
B = ( 2x - 3 )( 2x + 3 ) - x( 3 + 4x ) + 3x + 1
= [ ( 2x )2 - 32 ] - 3x - 4x2 + 3x + 1
= 4x2 - 9 - 4x2 + 1
= -8
Vậy B không phụ thuộc vào biến ( đpcm )
ta có:
A = \(\left(\dfrac{x+3}{2x+2}+\dfrac{3}{1-x^2}-\dfrac{x+1}{2x-2}\right):\dfrac{3}{2x^2-2}\)
= \(\left(\dfrac{x+3}{2\left(x+1\right)}-\dfrac{3}{x^2-1}-\dfrac{x+1}{2\left(x-1\right)}\right):\dfrac{3}{2\left(x^2-1\right)}\)
= \(\left(\dfrac{x+3}{2\left(x+1\right)}-\dfrac{3}{\left(x-1\right)\left(x+1\right)}-\dfrac{x+1}{2\left(x-1\right)}\right):\dfrac{3}{2\left(x-1\right)\left(x+1\right)}\)
= \(\left(\dfrac{\left(x+3\right)\left(x-1\right)}{2\left(x+1\right)\left(x-1\right)}-\dfrac{6}{2\left(x-1\right)\left(x+1\right)}-\dfrac{\left(x+1\right)^2}{2\left(x-1\right)\left(x+1\right)}\right):\dfrac{3}{2\left(x-1\right)\left(x+1\right)}\)
= \(\left(\dfrac{x^2-x+3x-3-6-x^2-2x-1}{2\left(x+1\right)\left(x-1\right)}\right):\dfrac{3}{2\left(x-1\right)\left(x+1\right)}\)
= \(-\dfrac{10}{2\left(x+1\right)\left(x-1\right)}.\dfrac{2\left(x+1\right)\left(x-1\right)}{3}\)
= \(-\dfrac{10}{3}\)
Vậy phương trình trên ko phụ thuộc vào biến
\(\left(x+2\right)^2-2\left(x+2\right)\left(x-8\right)+\left(x-8\right)^2\)
\(=\left(x+2\right)^2-\left(2x+4\right)\left(x-8\right)+\left(x-8\right)^2\)
\(=\left(x+2\right)^2-2x^2+16x-4x+32+\left(x-8\right)^2\)
\(=x^2+4x+4-2x^2+16x-4x+32+x^2-16x+64\)
\(=\left(x^2+x^2-2x^2\right)+\left(4x-4x\right)+\left(16x-16x\right)+4+32+64\)
\(=4+32+64=100\)
Ta có điều phải chứng minh
a) (x+2)2 -2(x+2)(x-8)+(x-8)2
=[ (x+2)-(x-8)]2
=(x+2-x+8)2
=102
= 100
VẬY GT CỦA BT KO PHỤ THUỘC VÀO BIẾN
\(M=\left(3+x\right)-\left(4x+1\right)-x\left(2+x\right)\)
\(=3+x-4x-1-2x-x^2\)
\(=-x^2-5x+2\)
Đề sai !
Bài 1.
1) ( x - 1 )3 - x( x - 3 )2 + 1
= x3 - 3x2 + 3x - 1 - x( x2 - 6x + 9 ) + 1
= x3 - 3x2 + 3x - x3 + 6x2 - 9x
= 3x2 - 6x = 3x( x - 2 )
2) ( x + 2 )2 - x2( x + 6 )
= x2 + 4x + 4 - x3 - 6x2
= -x3 - 5x2 + 4x + 4
3) ( x + 2 )3 - ( x - 2 )3
= x3 + 6x2 + 12x + 8 - ( x3 - 6x2 + 12x - 8 )
= x3 + 6x2 + 12x + 8 - x3 + 6x2 - 12x + 8
= 12x2 + 16 ( có phụ thuộc vào biến )
Bài 2.
1) ( x + 1 )3 - x2( x + 3 ) = 2
<=> x3 + 3x2 + 3x + 1 - x3 - 3x2 = 2
<=> 3x + 1 = 2
<=> 3x = 1
<=> x = 1/3
2) ( x - 2 )3 - x( x + 1 )( x - 1 ) + 6x2 = 5
<=> x3 - 6x2 + 12x - 8 - x( x2 - 1 ) + 6x2 = 5
<=> x3 + 12x - 8 - x3 + x = 5
<=> 13x - 8 = 5
<=> 13x = 13
<=> x = 1
Bài 1:
a) \(\left(x-1\right)^3-x\left(x-3\right)^2+1\)
\(=x^3-3x^2+3x-1-x^3+6x^2-9x+1\)
\(=3x^2-6x\)
b) \(\left(x+2\right)^2-x^2\left(x+6\right)\)
\(=x^2+4x+4-x^3-6x^2\)
\(=-x^3-5x^2+4x+4\)
c) \(\left(x+2\right)^3-\left(x-2\right)^3\)
\(=x^3+6x^2+12x+8-x^3+6x^2-12x+8\)
\(=12x^2+16\)
=> BT phụ thuộc vào biến
`(x-1)^3-(x-1)(x^2+x+1)-3(x-1)x`
`=x^3-3x^2+3x-1-x^3+1-3x^2+x`
`=-6x^2+4x`
`->` Bạn xem lại đề!