Cho dường tròn tâm O đg kính AB và tia tiếp tuyến Ax .Từ điểm M trên Ax kẻ tia tiếp tuyến thứ 2 MC với đường tròn;kẻCH vuông góc với AB
CMR;MB đi qua trung điểm N của CH
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: góc MAO+góc MCO=180 độ
=>MAOC nội tiếp
góc ADB=1/2*sđ cung AB=90 độ
=>AD vuông góc MB
Xét (O) có
MA,MC là tiếp tuyến
=>MA=MC
mà OA=OC
nên OM là trung trực của AC
=>OM vuông góc AC tại E
góc ADM=góc AEM=90 độ
=>AEDM là tứ giác nội tiếp
a: góc ADB=1/2*sđ cung AB=90 độ
=>AD vuông góc MB
Xét (O) có
MA,MC là tiếp tuyến
=>MA=MC
mà OA=OC
nên OM là trung trực của AC
=>OM vuông góc AC tại E
góc AEM=góc ADM=90 độ
=>AEDM nội tiếp
b: Xét ΔMAB vuông tại A có AD vuông góc MB
nên MA^2=MD*MB
a: Xét (O) có
MA.MC là tiếp tuyến
=>MA=MC
mà OA=OC
nên OM là trung trực của AC
=>OM vuông góc AC tại E
góc ADB=1/2*180=90 độ
=>góc ADM=90 độ=góc AEM
=>AMDE nội tiếp
b: AMDE nội tiếp
=>góc ADE=góc AMO=góc ACO
a) Xét tứ giác AMCO có
\(\widehat{MAO}\) và \(\widehat{MCO}\) là hai góc đối
\(\widehat{MAO}+\widehat{MCO}=180^0\left(90^0+90^0=180^0\right)\)
Do đó: AMCO là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
Xét (O) có
\(\widehat{ADB}\) là góc nội tiếp chắn nửa đường tròn
nên \(\widehat{ADB}=90^0\)(Hệ quả góc nội tiếp)
hay AD\(\perp\)MB tại D
Xét (O) có
MA là tiếp tuyến có A là tiếp điểm(gt)
MC là tiếp tuyến có C là tiếp điểm(gt)
Do đó: MA=MC(Tính chất hai tiếp tuyến cắt nhau)
Ta có: MA=MC(cmt)
nên M nằm trên đường trung trực của AC(Tính chất đường trung trực của một đoạn thẳng)(1)
Ta có: OA=OC(=R)
nên O nằm trên đường trung trực của AC(Tính chất đường trung trực của một đoạn thẳng)(2)
Từ (1) và (2) suy ra MO là đường trung trực của AC
hay MO\(\perp\)AC tại E
Xét tứ giác AMDE có
\(\widehat{ADM}=\widehat{AEM}\left(=90^0\right)\)
\(\widehat{ADM}\) và \(\widehat{AEM}\) là hai góc cùng nhìn cạnh AM
Do đó: AMDE là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)