Số điện từ tối đa của mỗi lớp e được xắp xếp theo công thức nào?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
chim | bộ phận cơ thể người | địa điểm | giáng sinh | lớp học | trang phục |
Tucen bird | Mouth | Park | Santa Claus | Book | T-shirt |
Flamingo | Nose | Cinema | Christmas tree | Pen | Socks |
Dove | Eye | Pagoda | Reindeer | Desk | Shoes |
Eagle | Hand | Market | Bell | Pencil | Hat |
Oriole | Head | Museum | Gift | Note book | Jeans |
Chọn D
n C : n H = 2 : ( 1 . 2 ) = 1 : 1 => CTPT: C n H n
=>X chứa vòng benzen + 1 liên kết đôi ở nhánh => độ bất bão hòa k = 5
CTPT X: C n H 2 n + 2 - 2 k => 2n + 2 – 2k = n => k = 5; n = 8 => CTPT: C 8 H 8
a) Thu gọn và sắp xếp:
\(P\left(x\right)=x^2+5x^4-3x^3+x^2+4x^4+3x^3-x+5\)
\(P\left(x\right)=\left(5x^4+4x^4\right)-\left(3x^3-3x^3\right)+\left(x^2+x^2\right)-x+5\)
\(P\left(x\right)=9x^4+2x^2-x+5\)
\(Q\left(x\right)=x-5x^3-x^2-x^4+4x^3-x^2+3x-1\)
\(Q\left(x\right)=x^4-\left(5x^3-4x^3\right)-\left(x^2+x^2\right)+\left(x+3x\right)-1\)
\(Q=x^4-x^3-2x^2+4x-1\)
b) \(P\left(x\right)+Q\left(x\right)\)
\(=\left(9x^4+2x^2-x+5\right)+\left(x^4-x^3-2x^2+4x-1\right)\)
\(=9x^4+2x^2-x+5+x^4-x^3-2x^2+4x-1\)
\(=\left(9x^4+x^4\right)-x^3+\left(2x^2-2x^2\right)-\left(x-4x\right)+\left(5-1\right)\)
\(=10x^4-x^3+3x+4\)
\(P\left(x\right)-Q\left(x\right)\)
\(=\left(9x^4+2x^2-x+5\right)-\left(x^4-x^3-2x^2+4x-1\right)\)
\(=9x^4+2x^2-x+5-x^4+x^3+2x^2-4x+1\)
\(=\left(9x^4-x^4\right)+x^3+\left(2x^2+2x^2\right)-\left(x+4x\right)+\left(5-1\right)\)
\(=8x^4+x^3+4x^2-5x+4\)
Xắp xếp các số : 0,9,3,2 theo thứ tự từ bé đến lơn
0;2;3;9
a: P(x)=6x^4+5x^3-3x^2+5x-10
Q(x)=5x^4+5x^3+2x^2-4x+4
b: P(x)+Q(x)
=6x^4+5x^3-3x^2+5x-10+5x^4+5x^3+2x^2-4x+4
=11x^4+10x^3-x^2+x-6
P(x)-Q(x)
=6x^4+5x^3-3x^2+5x-10-5x^4-5x^3-2x^2+4x-4
=x^4-5x^2+9x-14
lớp s, p;d;f