6/y+1/2=2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x+1+1}{x+1}+\dfrac{2}{y-2}=6\\\dfrac{5}{x+1}-\dfrac{1}{y-2}=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x+1}+\dfrac{2}{y-2}=5\\\dfrac{5}{x+1}-\dfrac{1}{y-2}=3\end{matrix}\right.\)
=>x+1=1 và y-2=1/2
=>x=0 và y=5/2
b: \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{4}{x-2y}=\dfrac{1}{2}-\dfrac{1}{18}=\dfrac{9}{18}-\dfrac{1}{18}=\dfrac{8}{18}=\dfrac{4}{9}\\\dfrac{2}{2x-y}=\dfrac{1}{18}+\dfrac{1}{x-2y}\end{matrix}\right.\)
=>x-2y=9 và 2/2x-y=1/18+1/9=1/18+2/18=3/18=1/6
=>x-2y=9 và 2x-y=12
=>x=5; y=-2
c: \(\Leftrightarrow\left\{{}\begin{matrix}10\left|x-6\right|+15\left|y+1\right|=25\\10\left|x-6\right|-8\left|y+1\right|=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}23\left|y+1\right|=23\\\left|x-6\right|=1\end{matrix}\right.\)
=>|x-6|=1 và |y+1|=1
=>\(\left\{{}\begin{matrix}x\in\left\{7;5\right\}\\y\in\left\{0;-2\right\}\end{matrix}\right.\)
N = (-y2 + 4)(2y3 + 6y - 1) + 2(y5 - 4y3 + 2)- y2(-6y + 1)
N = -y2(2y3 + 6y - 1) + 4(2y3 + 6y - 1) + 2y5 - 8y3 - 4 + 6y3 - y2
N = -2y5 - 6y3 + y2 + 8y3 + 24y - 4 + 2y5 - 8y3 - 4 + 6y3 - y2
N = (-2y5 + 2y5) + (-6y3 + 8y3 - 8y3 + 6y3) + (y2 - y2) + 24y + (-4 - 4)
N = 24y - 8
Thay y = -3,5 vào biểu thức N ta có :
N = 24.(-3,5) - 8 = -84 - 8 = -92
Hướng dẫn. Hoành độ giao điểm của parabol và đường thẳng đã cho là nghiệm của phương trình: x 2 + 4 x – 6 = 2 x + 2
⇔ x 1 = - 4 ; x 2 = 2
Đáp án: D
1/
\(x^2+y^2=\left(x-y\right)^2+2xy=2^2+2.1=6\)
2/
\(x^3-y^3=\left(x-y\right)\left(x^2+y^2+xy\right)=2\left(6+1\right)=14\)
3/
\(x^2-y^2=\left(x-y\right)\left(x+y\right)=2\left(x+y\right)\) (3)
Ta có
\(x^2+y^2=\left(x+y\right)^2-2xy=\left(x+y\right)^2-2=6\)
\(\Rightarrow\left(x+y\right)^2=8\Rightarrow\left(x+y\right)=\pm2\sqrt{2}\) Thay vào (3)
\(\Rightarrow x^2-y^2=2.\pm2\sqrt{2}=\pm4\sqrt{2}\)
4/
\(x^6-y^6=\left(x^3-y^3\right)\left(x^3+y^3\right)\) (4)
Ta có
\(x^3-y^3=14\) (cmt)
Ta có
\(x^3+y^3=\left(x+y\right)\left(x^2+y^2-xy\right)=\left(x+y\right).5=\pm2\sqrt{2}.5=\pm10\sqrt{2}\)
\(\Rightarrow x^6-y^6=\pm10\sqrt{2}.14=\pm140\sqrt{2}\)
`6/y + 1/2=2`
`6/y = 2-1/2`
`6/y = 4/2 - 1/2`
`6/y = (4-1)/2`
`6/y = 3/2`
`=> y = 6 : 3/2`
`=> y = 4`
\(\dfrac{6}{y}+\dfrac{1}{2}=2\Leftrightarrow\dfrac{6}{y}=2-\dfrac{1}{2}\Leftrightarrow\dfrac{6}{y}=\dfrac{3}{2}\Leftrightarrow y=4\)