\(4\dfrac{2}{3}-\left(\dfrac{3}{5}:x\right)=20\%\) ét ô éttttt
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: ĐKXĐ: x>1/2
=>\(\dfrac{x}{\sqrt{2x-1}}+\dfrac{x}{\sqrt[4]{4x-3}}=2\)
x^2-2x+1>=0
=>x^2>=2x-1
=>\(\dfrac{x}{\sqrt{2x-1}}>=1\)
Dấu = xảy ra khi x=1
(x^2-2x+1)(x^2+2x+3)>=0
=>x^4-4x+3>=0
=>x^4>=4x-3
=>\(\dfrac{x}{\sqrt[4]{4x-3}}>=1\)
=>VT>=2
Dấu = xảy ra khi x=1
2: 4x-1=x+x+2x-1
5x-2=x+2x-1+2x-1
\(\left(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{2x-1}}\right)\left(\sqrt{x}+\sqrt{x}+\sqrt{2x-1}\right)>=9\)
=>\(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{2x-1}}>=\dfrac{9}{\sqrt{x}+\sqrt{x}+\sqrt{2x-1}}\)
\(\left(\sqrt{x}+\sqrt{x}+\sqrt{2x-1}\right)^2< =3\left(4x-1\right)\)
=>\(\sqrt{x}+\sqrt{x}+\sqrt{2x-1}< =\sqrt{3\left(4x-1\right)}\)
=>\(\dfrac{2}{\sqrt{x}}+\dfrac{1}{\sqrt{2x-1}}>=\dfrac{3\sqrt{3}}{\sqrt{4x-1}}\)
Tương tự, ta cũng có: \(\dfrac{1}{\sqrt{x}}+\dfrac{2}{\sqrt{2x-1}}>=\dfrac{3\sqrt{3}}{\sqrt{5x-2}}\)
=>\(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{2x-1}}>=\sqrt{3}\left(\dfrac{1}{\sqrt{4x-1}}+\dfrac{1}{\sqrt{5x-2}}\right)\)
Dấu = xảy ra khi x=1
Áp dụng tính chất dãy tỉ số bằng nhau:\(\dfrac{\left(5z-3y\right)+\left(3x-2z\right)+\left(2y-5x\right)}{2+5+3}\)
=\(\dfrac{\left(3x-5x\right)+\left(-3y+2y\right)+\left(5z-2z\right)}{2+5+3}\)
=\(\dfrac{-2x-y+3z}{2+5+3}\)(???!!!!)
=\(\dfrac{-2x}{2}=\dfrac{-y}{5}=\dfrac{3z}{3}\)
=\(\dfrac{2}{-2x}=\dfrac{5}{-y}=\dfrac{3}{3z}\)
tớ xin chịu trận vì ko chứng minh được :(((
nó lại ra như thế này
e: \(=\dfrac{5^{30}\cdot3^{20}}{3^{15}\cdot5^{30}}=3^5=243\)
\(ĐKXĐ:x\ne1,x\ne3,x\ne8,x\ne20\)
\(\dfrac{2}{\left(x-1\right)\left(x-3\right)}+\dfrac{5}{\left(x-3\right)\left(x-8\right)}+\dfrac{12}{\left(x-8\right)\left(x-20\right)}-\dfrac{1}{x-20}=-\dfrac{3}{4}\)
\(\Rightarrow\dfrac{2}{\left(x-1\right)\left(x-3\right)}+\dfrac{5}{\left(x-3\right)\left(x-8\right)}+\dfrac{12}{\left(x-8\right)\left(x-20\right)}-\dfrac{1}{x-20}=-\dfrac{3}{4}\)
\(\Leftrightarrow\dfrac{2\left(x-8\right)\cdot\left(x-20\right)+5\left(x-1\right)\cdot\left(x-20\right)+12\left(x-1\right)\cdot\left(x-3\right)-\left(x-1\right)\cdot\left(x-3\right)\cdot\left(x-8\right)}{\left(x-1\right)\left(x-3\right)\left(x-8\right)\left(x-20\right)}=-\dfrac{3}{4}\)
\(\Leftrightarrow\dfrac{\left(2x-16\right)\cdot\left(x-20\right)+\left(5x-5\right)\cdot\left(x-20\right)+\left(12x-12\right)\cdot\left(x-3\right)-\left(x^2-3x-x+3\right)\cdot\left(x-8\right)}{\left(x-1\right)\left(x-3\right)\left(x-8\right)\left(x-20\right)}=-\dfrac{3}{4}\)
\(\Leftrightarrow\dfrac{2x^2-40x-16x+320+5x^2-100x-5x+100+12x^2-36x-12x+36-\left(x^2-4x+3\right)\cdot\left(x-8\right)}{\left(x-1\right)\left(x-3\right)\left(x-8\right)\left(x-20\right)}=-\dfrac{3}{4}\)
\(\Leftrightarrow\dfrac{2x^2-40x-16x+320+5x^2-100x-5x+100+12x^2-36x-\left(x^3-8x^2-4x^2+32x+3x-24\right)}{\left(x-1\right)\left(x-3\right)\left(x-8\right)\left(x-20\right)}\)
\(\Leftrightarrow\dfrac{2x^2-40x-16x+320+5x^2-100x-5x+100+12x^2-36x-12x+36-\left(x^3-12x^2+35x-24\right)}{\left(x-1\right)\left(x-3\right)\left(x-8\right)\left(x-20\right)}=-\dfrac{3}{4}\)
\(\Leftrightarrow\dfrac{2x^2-40x-16x+320+5x^2-100x-5x+100+12x^2-36x-12x+36-x^3+12x^2-35x+24}{\left(x-1\right)\left(x-3\right)\left(x-8\right)\left(x-20\right)}=-\dfrac{3}{4}\)
\(\Leftrightarrow\dfrac{31x^2-244x+480-x^3}{\left(x-1\right)\left(x-3\right)\left(x-8\right)\left(x-20\right)}=-\dfrac{3}{4}\)
\(\Leftrightarrow\dfrac{-x^3+31x^2-244x+480}{\left(x-1\right)\left(x-3\right)\left(x-8\right)\left(x-20\right)}=-\dfrac{3}{4}\)
\(\Leftrightarrow\dfrac{-x^3+3x^2+28x^2-84x-160x+480}{\left(x-1\right)\left(x-3\right)\left(x-8\right)\left(x-20\right)}=-\dfrac{3}{4}\)
\(\Leftrightarrow\dfrac{-x^2\cdot\left(x-3\right)+28x\cdot\left(x-3\right)-160\left(x-3\right)}{\left(x-1\right)\left(x-3\right)\left(x-8\right)\left(x-20\right)}=-\dfrac{3}{4}\)
\(\Leftrightarrow\dfrac{-\left(x-3\right)\left(x^2-28x+160\right)}{\left(x-1\right)\left(x-3\right)\left(x-8\right)\left(x-20\right)}=-\dfrac{3}{4}\)
\(\Leftrightarrow\dfrac{-1\left(x^2-8x-20x+160\right)}{\left(x-1\right)\left(x-8\right)\left(x-20\right)}=-\dfrac{3}{4}\)
\(\Leftrightarrow\dfrac{-1\left(x^2-8x-20x+160\right)}{\left(x-1\right)\left(x-8\right)\left(x-20\right)}=-\dfrac{3}{4}\)
\(\Leftrightarrow\dfrac{-1\left(x\cdot\left(x-8\right)-20\left(x-8\right)\right)}{\left(x-1\right)\left(x-8\right)\left(x-20\right)}=-\dfrac{3}{4}\)
\(\Leftrightarrow\dfrac{-1\left(x-20\right)\left(x-8\right)}{\left(x-1\right)\left(x-8\right)\left(x-20\right)}=-\dfrac{3}{4}\)
\(\Leftrightarrow\dfrac{-1}{x-1}=-\dfrac{3}{4}\)
\(\Leftrightarrow-\dfrac{1}{x-1}=-\dfrac{3}{4}\)
\(\Leftrightarrow-4=-3\left(x-1\right)\)
\(\Leftrightarrow-4=-3\left(x-1\right)\)
\(\Leftrightarrow-4=-3x+3\)
\(\Leftrightarrow3x=3+4\)
\(\Leftrightarrow3x=7\)
\(\Rightarrow x=\dfrac{7}{3}\)
Vậy \(x=\dfrac{7}{3}\)
cho ngu ké với bài này lớp 5 dư sức làm áp dụng 1/n(n+1)=1/n-1/n+1
\(\dfrac{2}{\left(x-1\right)\left(x-3\right)}+\dfrac{5}{\left(x-3\right)\left(x-8\right)}+\dfrac{12}{\left(x-8\right)\left(x-20\right)}+\dfrac{1}{x-20}=\dfrac{3}{4}\)
\(\Rightarrow\dfrac{1}{x-1}-\dfrac{1}{x-3}+\dfrac{1}{x-3}-\dfrac{1}{x-8}+\dfrac{1}{x-8}-\dfrac{1}{x-20}+\dfrac{1}{x-20}=\dfrac{3}{4}\)
\(\Rightarrow\dfrac{1}{x-1}=\dfrac{3}{4}\Rightarrow3x-3=4\Rightarrow x=\dfrac{7}{3}\)
Vậy...
\(a,=\dfrac{x^2-20+x^2-7x+10+3x+6}{\left(x-2\right)\left(x+2\right)}=\dfrac{\left(x-2\right)^2}{\left(x-2\right)\left(x+2\right)}=\dfrac{x-2}{x+2}\\ b,=\dfrac{10x+15-4x+6+2x-9}{\left(2x-3\right)\left(2x+3\right)}=\dfrac{4\left(2x+3\right)}{\left(2x-3\right)\left(2x+3\right)}=\dfrac{4}{2x-3}\\ c,=\dfrac{1}{x}-\dfrac{1}{x+1}+\dfrac{1}{x+1}-\dfrac{1}{x+2}+\dfrac{1}{x+2}-\dfrac{1}{x+3}+\dfrac{1}{x+3}-\dfrac{1}{x+4}\\ =\dfrac{1}{x}-\dfrac{1}{x+4}=\dfrac{x+4-x}{x\left(x+4\right)}=\dfrac{4}{x\left(x+4\right)}\)
\(\Leftrightarrow\dfrac{2}{x-3}-\dfrac{2}{x-2}+\dfrac{1}{x-8}-\dfrac{1}{x-3}+\dfrac{1}{x-20}-\dfrac{1}{x-8}-\dfrac{1}{x-20}=\dfrac{-3}{4}\)
\(\Leftrightarrow\dfrac{1}{x-3}-\dfrac{2}{x-2}=\dfrac{-3}{4}\)
\(\Leftrightarrow4\left(x-2\right)-8\left(x-3\right)=-3\left(x-3\right)\left(x-2\right)\)
\(\Leftrightarrow4x-8-8x+24+3\left(x^2-5x+6\right)=0\)
\(\Leftrightarrow3x^2-15x+18-4x+16=0\)
\(\Leftrightarrow3x^2-19x+34=0\)
\(\text{Δ}=\left(-19\right)^2-4\cdot3\cdot34=-47< 0\)
Do đó: Phương trình vô nghiệm
\(\dfrac{2}{\left(x-1\right)\left(x-3\right)}+\dfrac{5}{\left(x-3\right)\left(x-8\right)}+\dfrac{12}{\left(x-8\right)\left(x-20\right)}-\dfrac{1}{x-20}\)
\(\Leftrightarrow\dfrac{1}{x-1}-\dfrac{1}{x-3}+\dfrac{1}{x-3}-\dfrac{1}{x-8}+\dfrac{1}{x-8}-\dfrac{1}{x-20}-\dfrac{1}{x-20}=\dfrac{-1}{4}\)
\(\Leftrightarrow\dfrac{1}{x-1}-\dfrac{1}{x-20}-\dfrac{1}{x-20}=\dfrac{-1}{4}\)
\(\Leftrightarrow\dfrac{1}{x-1}=\dfrac{-1}{4}\)
\(\Leftrightarrow\left(x-1\right)\left(-1\right)=4\)
\(\Leftrightarrow x-1=-4\)
\(\Leftrightarrow x=-3\left(tm\right)\)
Vậy ..............
`4 2/3 - (3/5 : x)=20%`
`4 2/3 - (3/5 : x)= 20/100`
`4 2/3 - (3/5 : x)=1/5`
`14/3 - (3/5 : x)=1/5`
`3/5:x=14/3-1/5`
`3/5:x=67/15`
`x=3/5 : 67/15`
`x=3/5 xx 15/67`
`x=9/67`
Vậy....
`#LeMichael`
\(4 \dfrac{2}{3}-(\dfrac{3}{5}:x)=20\)%
\(=>\dfrac{14}{3}-(\dfrac{3}{5}:x)=\dfrac{1}{5}\)
\(=>\dfrac{3}{5}:x=\dfrac{14}{3}-\dfrac{1}{5}\)
\(=>\dfrac{3}{5}:x=\dfrac{67}{15}\)
\(=>x=\dfrac{3}{5}:\dfrac{67}{15}\)
\(=>x=\dfrac{9}{67}\)