K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 12 2016

số đó là -15 t tính cả buổi đó

k mik nha

a = 0; b= 4 

25 tháng 4 2020

a = 0: b=4

# hok tốt #

20 tháng 4 2018

de sai

27 tháng 8 2018

Trả lời:

đề sai

chúc bạn học tốt

12 tháng 6 2020

Ta chứng minh:\(\left(a+b\right)^2\le2\left(a^2+b^2\right)\Leftrightarrow\left(a-b\right)^2\ge0\) ( luôn đúng )

Khi đó:\(\left(a+b\right)^2\le2\left(a^2+b^2\right)\le16\)

\(\Rightarrow\left(a+b\right)^2\le16\Rightarrow-4\le a+b\le4\Rightarrowđpcm\)

3 tháng 11 2017

https://diendantoanhoc.net/topic/80743-a2bb2cc2aabbccaleq-9/

8 tháng 7 2020

Khá là ngại đánh máy bạn vào TKHĐ của mình xem hình ảnh nhé !Không có mô tả.

NV
5 tháng 10 2021

\(A=\left(\dfrac{1}{a^2+b^2}+\dfrac{1}{2ab}\right)+\left(ab+\dfrac{16}{ab}\right)+\dfrac{17}{2ab}\)

\(A\ge\dfrac{4}{a^2+b^2+2ab}+2\sqrt{\dfrac{16ab}{ab}}+\dfrac{17}{\dfrac{2\left(a+b\right)^2}{4}}\)

\(A\ge\dfrac{4}{\left(a+b\right)^2}+8+\dfrac{34}{\left(a+b\right)^2}\ge\dfrac{4}{4^2}+8+\dfrac{34}{4^2}=\dfrac{83}{8}\)

Dấu "=" xảy ra khi \(a=b=2\)

10 tháng 2 2018

Từ giả thiết của bài toán, ta biến đổi như sau:

\(a^2+b^2+c^2+\left(a+b+c\right)^2\le4\)

\(\Leftrightarrow a^2+b^2+c^2+ab+ac+bc\le2\)
Bất đẳng thức cần chứng minh tương đương với

\(A=\frac{ab+1}{\left(a+b\right)^2}+\frac{bc+1}{\left(b+c\right)^2}+\frac{ac+1}{\left(a+c\right)^2}\ge3\)

\(\Leftrightarrow\frac{2ab+2}{\left(a+b\right)^2}+\frac{2bc+2}{\left(b+c\right)^2}+\frac{2ac+2}{\left(a+c\right)^2}\ge6\)
Áp dụng giả thiết ta được

\(\frac{2ab+2}{\left(a+b\right)^2}+\frac{2ab+2}{\left(b+c\right)^2}+\frac{2ac+2}{\left(a+c\right)^2}\ge\text{∑}\frac{2ab+a^2+b^2+c^2+ab+bc+ac}{\left(a+b\right)^2}\)

\(=1+\frac{\left(c+a\right)\left(c+b\right)}{\left(a+b\right)^2}+1+\frac{\left(b+a\right)\left(c+b\right)}{\left(a+c^2\right)}+1+\frac{\left(c+a\right)\left(a+b\right)}{\left(c+b\right)^2}\)

\(=3+\frac{\left(c+a\right)\left(c+b\right)}{\left(a+b\right)^2}+\frac{\left(b+a\right)\left(c+b\right)}{\left(a+c\right)^2}+\frac{\left(c+a\right)\left(a+b\right)}{\left(c+b\right)^2}\ge\)

\(3+\sqrt[3]{\frac{\left(c+a\right)\left(c+b\right)\left(b+a\right)\left(c+b\right)\left(c+a\right)\left(a+b\right)}{\left[\left(a+b\right)\left(b+c\right)\left(c+a\right)\right]^2}}=3+3=6\)



Vậy bài toán đã được chứng minh. Đẳng thức xảy ra khi và chỉ khi a=b=c=13√.■

NV
20 tháng 1 2021

\(2=\left(a^2+ab+\dfrac{b^2}{4}\right)+\left(a^2-2+\dfrac{1}{a^2}\right)-ab\)

\(2=\left(a+\dfrac{b}{2}\right)^2+\left(a-\dfrac{1}{a}\right)^2-ab\ge-ab\)

\(\Rightarrow ab\ge-2\)

Dấu "=" xảy ra khi \(\left(a;b\right)=\left(1;-2\right);\left(-1;2\right)\)