cmr
nếu p và p^2 + 2 là số nguyên tố thì p^3 +2 cũng là số nguyên tố
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Answer:
Mình nghĩ đề là \(p^3+2\) mới đúng chứ nhỉ?
Ta nhận xét được:
Mọi số nguyên tố lớn hơn 3 thì chia cho 3 đề có dạng: \(\orbr{\begin{cases}p=3k+1\\p=3k+2\end{cases}}\left(k\inℕ^∗\right)\)
\(\orbr{\begin{cases}p=3k+1\Leftrightarrow p^2+2=9k^2+6k+3⋮3\\p=3k+2\Leftrightarrow p^2+2=9k^2-6k+6⋮3\end{cases}}\)
Vì p là số nguyên tố nên \(p\ge2\) khi đó trong cả hai trường hợp thì \(p^2+2>3\) và \(⋮3\)
\(\Rightarrow p^2+2\) là hợp số
\(\Rightarrow p^2+2\) là số nguyên tố khi \(p=3\) (Lúc này \(p^2+2=11\) là số nguyên tố)
\(\Rightarrow p^3+2=27+2=29\) là số nguyên tố
Vậy nếu \(p\) và \(p^2+2\) là số nguyên tố thì \(p^3+2\) cũng là số nguyên tố.
Lời giải:
-Nếu $p$ không chia hết cho $3\Rightarrow p\geq 2$
Ta biết rằng mọi số chính phương không chia hết cho $3$ thì chia $3$ dư $1$. Do đó $p^2+2\equiv 0\pmod 3$. Suy ra để $p^2+2$ là số nguyên tố thì $p^2+2=3\rightarrow p=1$ (vô lý)
Vậy $p$ thỏa mãn đề bài phải chia hết cho $3$, hay $p=3$. Thử vào $p^2+2=11,p^3+2=29\in\mathbb{P}$ nên ta có đpcm
Trần Văn Nghiệp
nếu hoặc thì
không phải số nguyên tố
suy ra
(là số nguyên tố)
Nếu p>3 mà p là SNT nên p ko chia hết cho 3
Suy ra p^2 chia 3 dư 1
Suy ra p^2+8 chia hết cho 3,mà p^2+8>3 nên p^2+8 là HS(L)
Vậy p nhỏ hơn hoặc bằng 3
Nếu p=2 thì p^2+8 là HS (L)
Khí đó p=3
Suy ra p^3+8p+2=53 là SNT(đpcm)
Mấy bạn giúp mình với nha !
CMR nếu n và n2 + 2 là các số nguyên tố thì n3 + 2 cũng là số nguyên tố !
nếu n=3 thì đúng
nếu n khác 3 thì n^2 + 2 chia hết cho 3 và>3 nên ko là số nguyên tố làm v đi
Nếu \(n>3\) mà \(n\) nguyên tố nên \(n\) chia 3 dư 1 hoặc 2 \(\Rightarrow n=3k\pm1\left(k\inℕ^∗\right)\)
Khi đó : \(n^2+2=\left(3k\pm1\right)^2+2=9k^2\pm3k+3⋮3\)
Điều này trái với giả thiết.
Vì vậy \(n=3\). Thử lại ta thấy đúng : \(\hept{\begin{cases}n=3\\n^2+2=11\\n^3+2=29\end{cases}}\) ( đpcm )
P là số tự nhiên lớn hơn 3 nên p có dạng :3k + 1 hoặc 3k + 2
xét trường hợp p=3k+1 ta có 2p + 1 = 2(3k+1)+1 = 6k + 2 +1 = 6k + 3 (chia hết cho 3 nên là hợp số) ,LOẠI
xét trường hợp p=3k+2 ta có 2p +1= 2(3k+2) +1 = 6k +4 +1 = 6k + 5 ( là snt theo đề bài nên ta chọn trường hợp này)
vậy 4p + 1 = 4(3k+2)+1 = 12k + 8 + 1 = 12k + 9 ta thấy 12k và 9 đều chia hêt cho 3 nên (12k+9) là hợp số
Do đó 4p + 1 là hợp số (.)
tick nhé
P là số tự nhiên lớn hơn 3 nên p có dạng :3k + 1 hoặc 3k + 2
xét trường hợp p=3k+1 ta có 2p + 1 = 2(3k+1)+1 = 6k + 2 +1 = 6k + 3 (chia hết cho 3 nên là hợp số) ,LOẠI
xét trường hợp p=3k+2 ta có 2p +1= 2(3k+2) +1 = 6k +4 +1 = 6k + 5 ( là snt theo đề bài nên ta chọn trường hợp này)
vậy 4p + 1 = 4(3k+2)+1 = 12k + 8 + 1 = 12k + 9 ta thấy 12k và 9 đều chia hêt cho 3 nên (12k+9) là hợp số
do đó 4p + 1 là hợp số ( đpcm)
Gỉa sử a2 và a+b không nguyên tố cùng nhau
ƯCLN(a2;a+b0=d(d\(\in\)N*,d\(\ne\)1,d nguyên tố) (1)
Nói cách khác: Gọi d là một ước nguyên tố của a2 và a+b
\(\Rightarrow\) a2 chia hết cho d
a+b chia hết cho d
\(\Rightarrow\) a chia hết cho d
a+b chia hét cho d
\(\Rightarrow\) a chia hết cho d
b chia hết cho d
\(\Rightarrow\)d là ƯC nguyên tố của a và b
\(\Rightarrow\)a và b không nguyên tố cùng nhau(mâu thuãn với đề bài)
Vậy a2 và a+b nguyên tố cùng nhau nếu a và b nguyên tố cùng nhau
$p^2 + 2 = p^2 - 1 + 3 = (p - 1)(p + 1) + 3$
Trong ba số tự nhiên liên tiếp : p - 1 ; p ; p + 1 có một số chia hết cho 3
Số đó không thể là p -1 hoặc p + 1 vì nếu giả sử ngược lại, ta suy ra $p^2 + 2$ chia hết cho 3 và $p^2 +2 > 3$ ( vô lí vì $p^2 + 2$ là số nguyên tố)
Vậy p chia hết cho 3 mà p là số nguyên tố nên suy ra p = 3
Khi p = 3 thì $p^3 + 2 = 3^3 + 2 = 29$ là số nguyên tố
Nếu p = 2 thì \(p^2+2=6\) (loại)
Nếu p = 3 thì \(p^2+2=11\) (chọn)
\(\Rightarrow p^3+2=3^3+2=29\) (số nguyên tố)
Hay p > 3
Vì p là số nguyên tố nên p không chia hết cho 3 \(\left(1\right)\)
\(p\inℤ \Rightarrow p^2\) là số chính phương \(\left(2\right)\)
Từ \(\left(1\right);\left(2\right) \Leftrightarrow p^2\) chia 3 dư 1.
\(\Rightarrow p^2+2 ⋮ 3\) \(\left(3\right)\)
Hay mặt khác, p > 3
\(\Rightarrow p^2>9\Leftrightarrow p^2+2>11\) \(\left(4\right)\)
Từ \(\left(3\right);\left(4\right)\Rightarrow p^2+2\) không là số nguyên tố.
\(\Rightarrow\) đề không hợp lệ.
#Hphong