K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 7 2022

Gọi \(a^2=x^2-4x+11\)

\(\Leftrightarrow a^2-\left(x^2-4x+11\right)=0\)

\(\Leftrightarrow a^2-\left(x^2-4x+4\right)-7=0\)

\(\Leftrightarrow a^2-\left(x-2\right)^2=7\)

\(\Leftrightarrow\left(a-x+2\right)\left(a+x-2\right)=7\)

... (Đoạn này thì tự làm nhaa)

15 tháng 7 2022

Đáp án:

x=5

Giải thích các bước giải:

D=x2−4x+11 là số chính phương

→x2−4x+11=k2(k∈N∗)

→(x2−4x+4)−k2=−7

→(x−2+k)(x−2−k)=−7(∗)

Do k∈N∗

nên x∈Z

⇒(∗) là phương trình ước số của −7

Ta có:

−7=(−1).7=1.(−7)=(−7).1=7.(−1)

Ta được:

[{x+k−2=−1x−k−2=7{x+k−2=1x−k−2=−7{x+k−2=−7x−k−2=1{x+k−2=7x−k−2=−1

⇔[{x=5k=−4(loại){x=−1k=2(loại){x=−1k=−4(loại){x=5k=4(nhận)

Vậy 

11 tháng 6 2017

\(A=\frac{x-2}{x+2}=\frac{x^2-4x+4}{x^2-4}=\frac{x^2-4-4x+8}{x^2-4}=1+\frac{-4\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}=1-\frac{4}{x+2}\)

Để   \(A\in Z\)  thì  \(\frac{4}{x+2}\in Z\Leftrightarrow x+2\inƯ\left(4\right)\)

\(\Rightarrow x\in\left\{-6;-4;-3;-1;0;2\right\}\)

\(B=\frac{3x-6}{x+6}=\frac{3x+18-24}{x+6}=\frac{3\left(x+6\right)}{x+6}-\frac{24}{x+6}=3-\frac{24}{x+6}\)

Để  \(B\in Z\)  thì  \(\frac{24}{x+6}\in Z\Leftrightarrow x+6\inƯ\left(24\right)\)

\(\Rightarrow x\in\left\{-30;-18;-14;-12;-10;-9;-8;-7;-5;-4;-3;-2;0;2;6;18\right\}\)

\(C=\frac{10-5x}{x-5}=\frac{-\left(5x-25+15\right)}{x-5}=\frac{-5\left(x-5\right)}{x-5}-\frac{15}{x-5}=-5-\frac{15}{x-5}\)

Để  \(C\in Z\)  thì  \(\frac{15}{x-5}\in Z\Leftrightarrow x-5\inƯ\left(15\right)\)

\(\Rightarrow x\in\left\{-10;0;4;6;10;20\right\}\)

\(D=\frac{8x-2}{2-4x}=\frac{-\left(4-8x\right)+2}{2\left(1-2x\right)}=\frac{-4\left(1-2x\right)}{2\left(1-2x\right)}+\frac{2}{2\left(1-2x\right)}=-2+\frac{1}{1-2x}\)

Để  \(D\in Z\)  thì  \(\frac{1}{1-2x}\in Z\Leftrightarrow1-2x\inƯ\left(1\right)\)

\(\Rightarrow x=0\)

11 tháng 6 2017

cj kia đúng đó

31 tháng 12 2018

M xác định

\(\Leftrightarrow\hept{\begin{cases}x-1\ne0\\x^2-x\ne0\end{cases}\Leftrightarrow}\hept{\begin{cases}x\ne1\\x\left(x-1\right)\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ne1\\x\ne0;x\ne1\end{cases}}\Leftrightarrow}\hept{\begin{cases}x\ne1\\x\ne0\end{cases}}\)

Vậy ĐKXĐ của M là \(\hept{\begin{cases}x\ne1\\x\ne0\end{cases}}\)

\(M=\frac{3}{x-1}+\frac{1}{x^2-x}=\frac{3}{x-1}+\frac{1}{x\left(x-1\right)}=\frac{3x}{x\left(x-1\right)}+\frac{1}{x\left(x-1\right)}=\frac{3x+1}{x\left(x-1\right)}\)

Thay x=5 ta có: 

\(M=\frac{3.5+1}{5\left(5-1\right)}=\frac{15+1}{5.4}=\frac{16}{20}=\frac{4}{5}\)

Vậy \(M=5\)tại  x=5

31 tháng 12 2018

\(M=0\)

\(\Leftrightarrow\frac{3x+1}{x\left(x-1\right)}=0\Leftrightarrow3x+1=0\Leftrightarrow x=-\frac{1}{3}\)( thỏa mãn đkxđ)

Vậy với \(x=-\frac{1}{3}\)thì \(M=0\)

\(M=-1\)

\(\Leftrightarrow\frac{3x+1}{x\left(x-1\right)}=-1\Leftrightarrow3x+1=-x^2+x\Leftrightarrow x^2+2x+1=0\Leftrightarrow\left(x+1\right)^2=0\Leftrightarrow x=-1\)

Vậy với \(x=-1\)thì \(M=-1\)

5 tháng 11 2021

a) Thế x và y ta có:

\(-2.\left(-3\right)-5+11+3.\left(-3\right)\)

\(=6-5+11-9=3\)

b) Thế x và y ta có:

\(2.5-3.\left(-3\right)+5\left(5-\left(-3\right)\right)+15\)

\(=10+9+5\left(5+3\right)+15\)

\(=10+9+40+15=74\)

c) Thế x và y ta có:

\(4.\left(-3\right)-4\left(-3-2.5\right)-7\left(5-2\right)\)

\(=-12-4.\left(-13\right)-7.3\)

\(=-12+52-21=19\)

11 tháng 1 2016

\(\frac{4x^2-6x+5}{2x-1}=2x-2+\frac{3}{2x-1}\)

Để biểu thức có giá trị nguyên thì \(\left(2x-1\right)\inƯ\left(3\right)=\left\{1;-1;3;-3\right\}\)

Với 2x - 1 = 1 => 2x = 2 => x = 1

      2x - 1 = -1 => 2x = 0 => x = 0

      2x - 1 = 3 => 2x = 4 => x = 2

      2x - 1 = -3 => 2x = -2 => x = -1

Vậy x = {1;0;2;-1}

14 tháng 7 2018

a) Vì \(\left|4,3-x\right|\ge0\Rightarrow A=3,7+\left|4,3-x\right|\ge3,7\)

Dấu "=" xảy ra <=> \(\left|4,3-x\right|=0\Leftrightarrow4,3-x=0\Leftrightarrow x=4,3\)

Vậy Amin = 3,7 khi và chỉ khi x = 4,3

b) Vì \(\left|3x+8,4\right|\ge0\Rightarrow B=\left|3x+8,4\right|-14\ge-14\)

Dấu "=" xảy ra <=> \(\left|3x+8,4\right|=0\Leftrightarrow3x=-8,4\Leftrightarrow x=-2,8\)

Vậy BMin = -14 khi và chỉ khi x = -2,8

c) Vì \(\left|4x-3\right|\ge0;\left|5y+7,5\right|\ge0\Rightarrow B=\left|4x-3\right|+\left|5y+7,5\right|+17,5\ge17,5\)

Dấu bằng xảy ra <=> \(\hept{\begin{cases}\left|4x-3\right|=0\\\left|5y+7,5\right|=0\end{cases}\Leftrightarrow\hept{\begin{cases}4x-3=0\\5y+7,5=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{3}{4}\\y=-1,5\end{cases}}}\)

Vậy CMin = 17,5 khi và chỉ khi x = 3/4 và y = -1,5

d) D = |x-2018| + |x-2017| = |x-2018| + |2017-x| lớn hơn hoặc bằng |x-2018+2017-x| = |-1|=1

Dấu "=" xảy ra khi và chỉ khi (x-2018).(2017-x) lớn hơn hoặc bằng 0

              (Tự giải ra)

Vậy DMin = 1 khi và chỉ khi ...

15 tháng 2 2023

Để C có giá trị là một số nguyên 

⇒ 6x-1 : 3x+2

    3x+2 : 3x+2 

⇒ 6x-1 : 3x+2

    2(3x+2) : 3x+2

⇒ 6x-1 : 3x+2

    6x+4 : 3x+2

⇒ (6x+4) - (6x-1) :3x+2

⇒  6x+4 - 6x+1 : 3x+2

⇒  5 : 3x+2

⇒3x+2 thuộc Ư(5) = 5;-5;-1;1

⇒x = 1;-1

15 tháng 2 2023

Một cọng b