1+1= 4+1=
2+1= 5+1=
3+1= 6+1=
hihi giải nha!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(12\dfrac{1}{3}-\left(3\dfrac{3}{4}+4\dfrac{3}{4}\right)\)
\(=\dfrac{37}{3}-3-4-\dfrac{3}{2}\)
\(=\dfrac{74-9}{6}-7=\dfrac{65}{6}-7=\dfrac{65-42}{7}=\dfrac{23}{7}\)
b: \(3\dfrac{5}{6}+2\dfrac{1}{6}\cdot6\)
\(=3+\dfrac{5}{6}+\dfrac{13}{6}\cdot6\)
\(=16+\dfrac{5}{6}=\dfrac{101}{6}\)
c: \(3\dfrac{1}{2}+4\dfrac{5}{7}-5\dfrac{5}{14}\)
\(=3+\dfrac{1}{2}+4+\dfrac{5}{7}-5-\dfrac{5}{14}\)
\(=2+\dfrac{7+10-5}{14}=2+\dfrac{12}{14}=2+\dfrac{6}{7}=\dfrac{20}{7}\)
d: \(=\dfrac{9}{2}+\dfrac{1}{2}:\dfrac{11}{2}=\dfrac{9}{2}+\dfrac{1}{11}=\dfrac{99+2}{22}=\dfrac{101}{22}\)
Làm như zậy bạn nhé ^_^"
Đặt :
\(A=\left(\frac{1}{1}.\frac{1}{2}+\frac{1}{2}.\frac{1}{3}+\frac{1}{3}.\frac{1}{4}+\frac{1}{4}.\frac{1}{5}+\frac{1}{5}.\frac{1}{6}\right)\)
\(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{5.6}\)( mik lười viết bạn thông cảm nhé !!! )
\(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{5}-\frac{1}{6}\)
\(A=\frac{1}{1}-\frac{1}{6}\)
\(A=\frac{5}{6}\)
Thay A vào biểu thức :
Ta có : \(\frac{5}{6}.10-x=0\)
=> \(\frac{25}{3}=x+0\)
=> \(x=\frac{25}{3}\)
a.\(\frac{1}{6}.6^x+6^x.36=6^{15}\left(1+6^3\right)\)
\(6^x.\frac{217}{6}=6^{15}.217\)
\(6^x=6^{16}\)
\(x=16\)
\(A=\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)\left(\frac{1}{4^2}-1\right)....\left(\frac{1}{2013^2}-1\right)\left(\frac{1}{2014^2}-1\right)\)
\(\Leftrightarrow A=\left(\frac{1}{4}-1\right)\left(\frac{1}{9}-1\right)\left(\frac{1}{16}-1\right)....\left(\frac{1}{4052169}-1\right)\left(\frac{1}{\text{}\text{}4056196}-1\right)\)
\(\Leftrightarrow A=\frac{-3}{4}.\frac{-8}{9}.\frac{-15}{16}.....\frac{-4056195}{\text{}4056196}\)
\(\Leftrightarrow A=\frac{\left(-1\right)3}{2^2}.\frac{\left(-2\right)4}{3^3}.\frac{\left(-3\right)5}{4^2}.....\frac{\left(-2013\right)2015}{\text{}2014^2}\)
\(\Leftrightarrow A=\frac{\left(-1\right)\left(-2\right)....\left(-2013\right)}{2.3...1014}.\frac{3.4......2015}{2.3......2014}\)
\(\Leftrightarrow A=\frac{-1}{1014}.\frac{2015}{2}=\frac{-2015}{4028}\)
VÌ \(\frac{-2015}{4028}< \frac{-1}{2}\)
\(\Rightarrow A< \frac{-1}{2}\Leftrightarrow A< B\)
Ta có \(A=\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)...\left(\frac{1}{2014^2}-1\right)=\frac{-3}{2^2}.\frac{-8}{3^2}...\frac{-4056195}{2014^2}\)
\(=-\left(\frac{1.3}{2^2}.\frac{2.4}{3^2}...\frac{2013.2015}{2014^2}\right)=-\left(\frac{1.3.2.4...2013.2015}{2.2.3.3...2014.2014}\right)\)
\(=-\left(\frac{\left(1.2.3...2013\right)\left(3.4.5...2015\right)}{\left(2.3.4...2014\right)\left(2.3.4...2014\right)}\right)=-\frac{2015}{2014.2}=-\frac{2015}{4028}< \frac{-2014}{4028}< \frac{1}{2}=B\)
=> A < B
\(\left(1-\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)\left(1-\dfrac{1}{4}\right)\left(1-\dfrac{1}{5}\right)\left(1-\dfrac{1}{6}\right)\)
\(=\dfrac{1}{2}\cdot\dfrac{2}{3}\cdot\dfrac{3}{4}\cdot\dfrac{4}{5}\cdot\dfrac{5}{6}\)
\(=\dfrac{1}{6}\)
\(\cdot DuyNam\)
\(A=-\dfrac{7}{21}+\left(1+\dfrac{1}{3}\right)\)
\(A=-\dfrac{7}{21}+\dfrac{4}{3}\)
\(A=1\)
\(B=\dfrac{2}{15}+\left(\dfrac{5}{9}+-\dfrac{6}{9}\right)\)
\(B=\dfrac{2}{15}+-\dfrac{1}{9}\)
\(B=\dfrac{1}{45}\)
\(C=\left(-\dfrac{1}{5}+\dfrac{3}{12}\right)+-\dfrac{3}{4}\)
\(C=\dfrac{1}{20}+-\dfrac{3}{4}\)
\(C=-\dfrac{7}{10}\)
1+1=2 4+1=5
2+1=3 5+1=6
3+1=4 6+1=7
K ĐI
K LẠI
1+1=2 4+1=5
2+1=3 5+1=6
3+1=4 6+1=7