Tìm x:
485-6( 2x-10)= 5
giúp mình với, nhanh nhé
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(5-\frac{2x}{3}=4x-\frac{1}{-5}\)
\(\frac{75-10x}{15}=\frac{60x+3}{15}\)
75 - 10x = 60x +3
72 = 70x
\(\frac{72}{70}\) = x
x =\(\frac{36}{35}\)
Vậy x = \(\frac{36}{35}\)
b) \(2x-\frac{10}{6}=\frac{-27}{5}-x\)
\(2x-\frac{5}{3}=\frac{-27}{5}-x\)
\(\frac{30x-25}{15}=\frac{-81-15}{15}\)
30x =-96+25
30x =-71
x= -71/30
Vậy x= -71/30
c) \(13x-\frac{2}{2x}+5=\frac{76}{17}\)
13x - 1/x +5 = 76/17
\(\frac{221x-17+85}{17x}=\frac{76x}{17x}\)
221x +68 = 76x
221x-76x =-68
145x =-68
x =\(\frac{-68}{145}\)
Vậy .........
\(\frac{5-2x}{3}=\frac{4x-1}{-5}\)
-5(5-2x) = 3(4x-1)
-25 + 10x = 12x - 3
10x - 12x = -3 + 25
-2x = 22
x= -11
Nhân chéo như trên rồi tự làm nha
Học tốt~
a. \(3-\frac{2}{2x-1}=\frac{2}{3}+\frac{2}{6x-3}-\frac{3}{2}\)
\(3+\frac{3}{2}-\frac{2}{3}=\frac{2}{6x-3}+\frac{2}{2x-1}\)
\(\frac{23}{6}=\frac{2}{6x-3}+\frac{6}{6x-3}\)
\(\frac{23}{6}=\frac{8}{6x-3}\)\(\Rightarrow23.\left(6x-3\right)=48\)
\(6x-3=\frac{48}{23}\)
\(6x=\frac{48}{23}+3=\frac{117}{23}\)
\(x=\frac{117}{23}:6=\frac{117}{23}.\frac{1}{6}=\frac{39}{46}\)
b . \(\frac{1}{2x+3}+\frac{-2}{3}.\left(\frac{3}{4}-\frac{6}{5}\right)=\frac{5}{4x+6}\)
\(\frac{1}{2x+3}+\frac{-2}{3}.\frac{-9}{20}=\frac{5}{4x+6}\)
\(\frac{1}{2x+3}+\frac{3}{10}=\frac{5}{4x+6}\)
\(\frac{3}{10}=\frac{5}{4x+6}-\frac{1}{2x+3}\)\(=\frac{5}{4x+6}-\frac{2}{4x+6}\)
\(\frac{3}{10}=\frac{3}{4x+6}\)\(\Rightarrow3.\left(4x+6\right)=30\)
\(4x+6=30:3=10\)
\(4x=10-6=4\)
\(x=4:4=1\)
a) \(2\left|x\right|-5=3\)
=> \(2\left|x\right|=3+5\)
=> \(2\left|x\right|=8\)
=> \(\left|x\right|=4\)
=> x = 4 hoặc x = -4
b) \(x-5=\left(-14\right)+2^3\)
=> \(x-5=\left(-14\right)+8\)
=> \(x-5=-6\)
=> \(x=-6+5=-1\)
c) \(10+2x=4^5:4^3\)
=> \(10+2x=4^{5-3}\)
=> \(10+2x=4^2\)
=> \(2x=4^2-10=16-10=6\)
=> \(2x=6\)
=> \(x=3\)
d) (x + 7) - 13 = 4
=> x + 7 = 17
=> x = 17 - 7 = 10
e) \(2x-10=2^4:2^2\)
=> \(2x-10=2^2\)
=> \(2x-10=4\)
=> \(2x=14\)
=> \(x=7\)
2) Ta có: \(\left(2x+1\right).\left(3y-2\right)=-55=\left(-1\right).55=1.\left(-55\right)=\left(-5\right).11=5.\left(-11\right)\)
- Ta có bảng giá trị:
\(2x+1\) | \(-55\) | \(-11\) | \(-5\) | \(-1\) | \(1\) | \(5\) | \(11\) | \(55\) |
\(3y-2\) | \(1\) | \(5\) | \(11\) | \(55\) | \(-55\) | \(-11\) | \(-5\) | \(-1\) |
\(x\) | \(-28\) | \(-6\) | \(-3\) | \(-1\) | \(0\) | \(2\) | \(5\) | \(27\) |
\(y\) | \(1\) | \(\frac{7}{3}\) | \(\frac{13}{3}\) | \(19\) | \(-\frac{53}{3}\) | \(-3\) | \(-1\) | \(\frac{1}{3}\) |
\(\left(TM\right)\) | \(\left(L\right)\) | \(\left(L\right)\) | \(\left(TM\right)\) | \(\left(L\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(L\right)\) |
Vậy \(\left(x,y\right)\in\left\{\left(-28,1\right);\left(-1,19\right);\left(2,-3\right);\left(5,-1\right)\right\}\)
3) Ta có: \(\left(x-2\right).\left(y+3\right)=5=\left(-1\right).\left(-5\right)=1.5\)
- Ta có bảng giá trị:
\(x-2\) | \(-1\) | \(1\) | \(-5\) | \(5\) |
\(y+3\) | \(-5\) | \(5\) | \(-1\) | \(1\) |
\(x\) | \(1\) | \(3\) | \(-3\) | \(7\) |
\(y\) | \(-8\) | \(2\) | \(-4\) | \(-2\) |
\(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) |
Vậy \(\left(x,y\right)\in\left\{\left(1,-8\right);\left(3,2\right);\left(-3,-4\right);\left(7,-2\right)\right\}\)
4) Ta có: \(\left(2x+3\right).\left(y-5\right)=10=\left(-1\right).\left(-10\right)=1.10=\left(-2\right).\left(-5\right)=2.5\)
- Vì \(x\in Z\)mà \(2x+3\)là số lẻ \(\Rightarrow\)\(2x+3\in\left\{-1,1,-5,5\right\}\)
- Ta có bảng giá trị:
\(2x+3\) | \(-1\) | \(1\) | \(-5\) | \(5\) |
\(y-5\) | \(-10\) | \(11\) | \(-2\) | \(2\) |
\(x\) | \(-2\) | \(-1\) | \(-4\) | \(1\) |
\(y\) | \(-5\) | \(16\) | \(3\) | \(7\) |
\(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) |
Vậy \(\left(x,y\right)\in\left\{\left(-2,-5\right);\left(-1,16\right);\left(-4,3\right);\left(1,7\right)\right\}\)
a) 2x - 3 = -12
=> 2x = -12 + 3 = -9
=> x = \(-\frac{9}{2}\)
b) \(\frac{1}{2}+2x=-\frac{5}{6}:\frac{2}{3}\)
=> \(\frac{1}{2}+2x=-\frac{5}{6}\cdot\frac{3}{2}\)
=> \(\frac{1}{2}+2x=-\frac{5}{2}\cdot\frac{1}{2}\)
=> \(\frac{1}{2}+2x=-\frac{5}{2}\)
=> \(2x=-\frac{5}{2}-\frac{1}{2}=-3\)
=> \(x=-3:2=-\frac{3}{2}\)
c) \(1< \frac{x}{5}< 2\)
=> \(\frac{5}{5}< \frac{x}{5}< \frac{10}{5}\)
=> 5 < x < 10
=> x \(\in\){6,7,8,9}
Dù bạn có cho âm vào nx thì nó vẫn sai nhá
d) Đặt \(A=\frac{x+5}{x-2}=\frac{x-2+7}{x-2}=1+\frac{7}{x-2}\)
=> \(x-2\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
+) x - 2 = 1 => x = 3(T/M)
x - 2 = -1 => x = -1 +2 = 1(t/m)
x - 2 = 7 => x = 9 (t/m)
x - 2 = -7 => x = -7 + 2 = -5(t/m)
e) làm nốt ...
a,\(2x-3=-12\)
\(< =>2x=-12+3=-9\)
\(< =>x=-\frac{9}{2}\)
b,\(\frac{1}{2}+2x=-\frac{5}{6}:\frac{2}{3}\)
\(< =>\frac{1}{2}+\frac{4x}{2}=-\frac{5}{6}.\frac{3}{2}\)\(< =>\frac{4x+1}{2}=-\frac{5}{4}\)
\(< =>\frac{8x+2}{4}=-\frac{5}{4}\)\(< =>8x+2=-5\)
\(< =>8x=-5-2=-7\)\(< =>x=-\frac{7}{8}\)
a)
\(\left(2x-15\right)^5=\left(2x-15\right)^3\\ \Leftrightarrow\left(2x-15\right)^5-\left(2x-15\right)^3=0\\ \Leftrightarrow\left(2x-15\right)^3.\left[\left(2x-15\right)^2-1\right]=0\\ \Leftrightarrow\left[{}\begin{matrix}2x-15=0\\\left(2x-15\right)^2-1=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}2x-15=0\\\left(2x-15-1\right).\left(2d-15+1\right)=0\end{matrix}\right.\\\Leftrightarrow\left[{}\begin{matrix}2x-15=0\\2x-16=0\\2x-14=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{15}{2}\\x=8\\x=7\end{matrix}\right. \)
b) \(\left(7x-11\right)^3=\left(-3\right)^2.15+208\\ \Leftrightarrow\left(7x-11\right)^3=343=7^3\\ \Leftrightarrow7x-11=7\\ \Leftrightarrow x=\dfrac{18}{7}\)
1. áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{x+2}{3}=\frac{y-7}{5}=\frac{x+y-5}{3+5}=\frac{16}{8}=2\Rightarrow\hept{\begin{cases}x+2=6\\y-7=10\end{cases}\Leftrightarrow\hept{\begin{cases}x=4\\y=17\end{cases}}}\)
2. áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{x+5}{2}=\frac{y-2}{3}=\frac{x+5-y+2}{2-3}=\frac{-10+7}{-1}=3\Rightarrow\hept{\begin{cases}x+5=6\\y-2=9\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=11\end{cases}}\)
485-6( 2x-10)= 5
= 6( 2x-10) = 485 - 5
= 6( 2x-10) = 480
= ( 2x-10) = 480:6
= 2x-10 = 80
= 2x = 80+10
= 2 x= 90
= x = 90: 2
= x = 45
`485-6.(2x-10)=5`
`6.(2x-10)=485-5`
`6.(2x-10)=480`
`2x-10=480:6`
`2x-10=90`
`2x=90+10`
`2x=100`
`x=100:2`
`x=50`
Vậy `x=50`
`#LeMichael`