K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 7 2022

ĐKXĐ: \(\forall x\in R\)

Ta có: \(2x^2-4x+11+\sqrt{3x^4-6x^2+28}=-3x^2+6x+5\)

\(\Leftrightarrow\sqrt{3x^4-6x^2+28}=-3x^2+6x+5-2x^2+4x-11\)

\(\Leftrightarrow\sqrt{3x^4-6x^2+28}=-5x^2+10x-6\)

\(\Leftrightarrow3x^4-6x^2+28=\left(-5x^2+10x-6\right)^2\)

\(\Leftrightarrow3x^4-6x^2+28=25x^4-100x^3+160x^2-120x+36\)

\(\Leftrightarrow22x^4-100x^3+166x^2-120x+8=0\) (Vô nghiệm)

 

 

 

14 tháng 7 2022

Ta có: 2x^2-4x+11+\sqrt{3x^4-6x^2+28}=-3x^2+6x+5

\Leftrightarrow\sqrt{3x^4-6x^2+28}=-3x^2+6x+5-2x^2+4x-11

\Leftrightarrow\sqrt{3x^4-6x^2+28}=-5x^2+10x-6

\Leftrightarrow3x^4-6x^2+28=\left(-5x^2+10x-6\right)^2

\Leftrightarrow3x^4-6x^2+28=25x^4-100x^3+160x^2-120x+36

\Leftrightarrow22x^4-100x^3+166x^2-120x+8=0 (Vô nghiệm)

NV
24 tháng 1 2022

\(\Leftrightarrow\sqrt{2\left(x^2-1\right)^2+9}+\sqrt{3\left(x-1\right)^2+25}=-3\left(x-1\right)^2+8\)

Ta có:

\(\left\{{}\begin{matrix}\sqrt{2\left(x^2-1\right)^2+9}+\sqrt{3\left(x-1\right)^2+25}\ge\sqrt{9}+\sqrt{25}=8\\-3\left(x-1\right)^2+8\le8\end{matrix}\right.\)

\(\Rightarrow\sqrt{2\left(x^2-1\right)^2+9}+\sqrt{3\left(x-1\right)^2+25}\ge-3\left(x-1\right)^2+8\)

Đẳng thức xảy ra khi và chỉ khi \(x=1\)

28 tháng 1 2019

Em xin phép làm bài EZ nhất :)

4,ĐK :\(\forall x\in R\)

Đặt \(x^2+x+2=t\) (\(t\ge\dfrac{7}{4}\))

\(PT\Leftrightarrow\sqrt{t+5}+\sqrt{t}=\sqrt{3t+13}\)

\(\Leftrightarrow2t+5+2\sqrt{t\left(t+5\right)}=3t+13\)

\(\Leftrightarrow t+8=2\sqrt{t^2+5t}\)

\(\Leftrightarrow\left\{{}\begin{matrix}t\ge-8\\\left(t+8\right)^2=4t^2+20t\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}t\ge\dfrac{7}{4}\\3t^2+4t-64=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}t\ge\dfrac{7}{4}\\\left(t-4\right)\left(3t+16\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}t\ge\dfrac{7}{4}\\\left[{}\begin{matrix}t=4\left(tm\right)\\t=-\dfrac{16}{3}\left(l\right)\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow x^2+x+2=4\)\(\Leftrightarrow x^2+x-2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)

Vậy ....

NV
21 tháng 7 2021

c.

ĐLXĐ: \(x\ge-\dfrac{1}{3}\)

\(-\left(3x+1\right)+\sqrt{3x+1}+4x^2-10x+6=0\)

Đặt \(\sqrt{3x+1}=t\ge0\)

\(\Rightarrow-t^2+t+4x^2-10x+6=0\)

\(\Delta=1+4\left(4x^2-10x+6\right)=\left(4x-5\right)^2\)

\(\Rightarrow\left[{}\begin{matrix}t=\dfrac{-1+4x-5}{-2}=3-2x\\t=\dfrac{-1-4x+5}{-2}=2x-2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{3x+1}=3-2x\left(x\le\dfrac{3}{2}\right)\\\sqrt{3x-1}=2x-2\left(x\ge1\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}3x+1=4x^2-12x+9\left(x\le\dfrac{3}{2}\right)\\3x-1=4x^2-8x+4\left(x\ge1\right)\end{matrix}\right.\)

\(\Leftrightarrow...\)

NV
21 tháng 7 2021

a.

ĐKXĐ: \(x\ge-\dfrac{5}{4}\)

\(\Leftrightarrow4x^2-12x-2-2\sqrt{4x+5}=0\)

\(\Leftrightarrow\left(4x^2-8x+4\right)-\left(4x+5+2\sqrt{4x+5}+1\right)=0\)

\(\Leftrightarrow\left(2x-2\right)^2-\left(\sqrt{4x+5}+1\right)^2=0\)

\(\Leftrightarrow\left(2x-2-\sqrt{4x+5}-1\right)\left(2x-2+\sqrt{4x+5}+1\right)=0\)

\(\Leftrightarrow\left(2x-3-\sqrt{4x+5}\right)\left(2x-1+\sqrt{4x+5}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{4x+5}=2x-3\left(x\ge\dfrac{3}{2}\right)\\\sqrt{4x+5}=1-2x\left(x\le\dfrac{1}{2}\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}4x+5=4x^2-12x+9\left(x\ge\dfrac{3}{2}\right)\\4x+5=4x^2-4x+1\left(x\le\dfrac{1}{2}\right)\end{matrix}\right.\)

\(\Leftrightarrow...\)

18 tháng 1 2019

1)6x-8=3x+1

6x-3x=1+8

3x=9

x=3

Vậy x=3

2: 12-10x=25-30x

=>20x=13

=>x=13/20

3: \(3\left(2x+3\right)-2\left(4x-5\right)=10x+21\)

=>6x+9-8x+10=10x+21

=>10x+21=-2x+19

=>12x=-2

=>x=-1/6

4: \(\Leftrightarrow25x-15-6x+12=11-5x\)

=>19x-3=11-5x

=>24x=14

=>x=7/12

5: \(\Leftrightarrow8-12x-5+10x=4-6x\)

=>4-6x=-2x+3

=>-4x=-1

=>x=1/4

6: \(\Leftrightarrow32x-24-6+9x=13-40x\)

=>41x-30=13-40x

=>81x=43

=>x=43/81

7: \(\Leftrightarrow10x-5+20x=5x-11\)

=>30x-5=5x-11

=>25x=-6

=>x=-6/25