K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

 Từ n+4 chia hết cho n+1 
Ta có : n+4=(n+1) + 3
Thì ta có n + 1 +3 sẽ chia hết cho n+1
Suy ra 3 chia hết cho n+1
 n+1 sẽ thuộc ước của 3 
Ư(3) = ((1;3))
Suy ra n+1=1 hoặc n+1=3
+) n+1=1
   n     = 1-1
   n     = 0
+) n+1= 3
    n    = 3-1
    n    = 2

Suy ra n có thể bằng 0 hoặc 2
k cho mình nha

30 tháng 10 2016

Gọi ước của x + 5y là d.Ta có :

x + 5y .: d => 7(x + 5y) = 7x + 35y .: d mà 7x + 35y = 7x + 9y + 26y ; 7x + 9y và 26y chia hết cho 13

=> d = 13 => x + 5y chia hết cho 13

Ngược lại :

x + 5y .: 13 => 7(x + 5y) = 7x + 35y .: 13 => 7x + 35y - 26y = 7x + 9y .: 13 (vì 26y .: 13)

19 tháng 7 2018

bạn ơi bạn chỉ cần biến đổi làm sao cho nguyên vế đó trở thành dạng 5 x ( ...)  hoặc là bạn nói nó là bội của 5 thì bạn sẽ kết luận được nó chia hết cho 5 nhé , còn chia hết cho 2 cũng vậy đấy !

bạn hãy nhân đa thức với đa thức nhé !

Mình hướng dẫn bạn rồi đấy ! ok!

k nha !

19 tháng 7 2018

Ai đó làm ơn giúp tớ đi, rất gấp đó !!!!!!!

3 tháng 6 2017

Có 5 số, và 3 số dư khi chia cho 3 là 0;1;2 
Nếu có 3,4 hay 5 số mà có cùng số dư khi chia cho 3 thì tổng 3 trong số đó chia hết cho 3. 
Nếu có ít hơn 3 nghĩa là nhiều nhất 2 số có cùng số dư khi chia cho 3 thì trong 5 số đó cùng tồn tại các số chia 3 dư 0;1;2 nên tổng 3 số có số dư khi chia cho 3 khác nhau sẽ chia hết cho 3. 
Do đó trong 5 số nguyên bất kì luôn tìm được 3 số có tổng chia hết cho 3.

6 tháng 7 2016

Giả sử tồn tại n sao cho n2 + 3n - 38 chia chết cho 49. 
Khi đó: Xét biểu thức n2 - 4n + 4 = n2 + 3n - 7n - 38 + 42 = n2 + 3n - 38 - 7(n - 6) chia hết cho 7 
Biểu thức đem xét là n2 - 4n + 4 viết -4n = -7n + 3n; 4 = -38 + 42
=> n2 - 4n + 4 = (n - 2)2 chia hết cho 7 hay n - 2 chia hết cho 7; 
Gọi n - 2 = 7t => n = 2 + 7t. Thay vào S ta có: 
S = (2 + 7t)2 + 3(2 + 7t) - 38 = 4 + 28t + 49t2 + 6 + 21t - 38 = 49t2 + 49t - 28 
=> Không chia hết cho 49 
=> ĐPCM

7 tháng 7 2016

nhưng tại sao lại xét biểu thức n^2-4n+4 vậy bạn

 

12 tháng 10 2018

Giúp minh đi ngày mai mình thi khảo sát rồi Hu Hu!

12 tháng 10 2018

n+3 chia hết cho n+1 suy ra n+1+2 chia hết cho n+1

suy ra 2 chia hết cho n+1

Mà n là STN nên n+1=1 hoặc n+1=2 

suy ra n=1 hoặc n=0

24 tháng 11 2017

Ta thấy n ; n+1 là 2 số tự nhiên liên tiếp nên có 1 số chia hết cho 2 => n.(n+1).(n+2) chia hết cho 2

Nếu n chia hết cho 3 => n.(n+1).(n+5) chia hết cho 3

Nếu n chia 3 dư 1 => n+5 chia hết cho 3 => n.(n+1).(n+5) chia hết cho 3

Nếu n chia 3 dư 2 => n+1 chia hết cho 3 => n.(n+1).(n+5) chia hết cho 3

Vậy n.(n+1).(n+5) chia hết cho 3

=> n.(n+1).(n+5) chia hết cho 6 ( vì 2 và 3 là 2 số nguyên tố cùng nhau )

=> ĐPCM

k mk nha

24 tháng 11 2017

vì n ( n + 1 ) ( n + 5 ) chia hết cho 6 => n ( n + 1 ) ( n + 5 ) chia hết cho 2 ; 3

+) ta thấy n ( n + 1 ) là tích của 2 số tự nhiên liên tiếp  , mà trong 2 số tự nhiên liên tiếp luôn có 1 số chẵn chia hết cho 2 => n ( n + 1 ) chia hết cho 2 => n ( n + 1 ) ( n + 5 ) chia hết cho 2

+) đem chia n cho 3 xảy ra 3 trường hợp về số dư : dư 0 ; dư 1 ; dư 2 

- nếu n chia cho 3 dư 0 => n chia hết cho 3 = > n ( n + 1 ) ( n + 5 ) chia hết cho 3

- nếu n chia cho 3 dư 1 => n = 3k + 1 ( k e N* )

khi đó  n + 5 = 3k + 1 + 5 = 3k + 6 = 3 ( k + 2 ) chia hết cho 3

=> n ( n + 1 ) ( n + 5 ) chia hết cho 3 

- nếu n chia cho 3 dư 2 => n = 3k + 2 ( k e N* )

khi đó n + 1 = 3k + 2 + 1 = 3k + 3 = 3 ( k + 1 ) chia hết cho 3

=> n ( n + 1 ) ( n + 5 ) chia hết cho 3

=> n ( n + 1 ) ( n + 5 ) chia hết cho 2 ; 3

mà ƯCLN( 2 ; 3 ) = 1

=> n ( n + 1 ) ( n + 5 ) chia hết cho 2 . 3

=> n ( n + 1 ) ( n + 2 ) chia hết cho 6

chúc bạn học tốt

^^