Cho a+b+c+ab+bc+ca=6. Cmr \(a^2+b^2+c^2\ge3\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
dạng này thì chỉ có quy đồng thôi nhé mặc dù quy đồng chưa ra
Chứng minh BĐT vế trái:
\(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\ge a^2+b^2+c^2\)
Áp dụng BĐT Cauchy-Schwarz dạng Engel:
\(VT=\frac{a^4}{ab}+\frac{b^4}{bc}+\frac{c^4}{ca}\ge\frac{\left(a^2+b^2+c^2\right)^2}{ab+bc+ca}\ge a^2+b^2+c^2\)
Tiếp theo, chứng minh BĐT vế phải:\(a^2+b^2+c^2\ge3\)
Từ giả thiết suy ra: \(6=a+b+c+ab+bc+ca\le a+b+c+\frac{\left(a+b+c\right)^2}{3}\Rightarrow a+b+c\ge3\)
Ta có: \(VT\ge\frac{\left(a+b+c\right)^2}{3}\ge3\)
Đẳng thức xảy ra khi a = b = c = 1
Từ giả thiết:
\(a^2+b^2+c^2+a^2+b^2+c^2+2\left(ab+bc+ca\right)\le4\)
\(\Rightarrow a^2+b^2+c^2+ab+bc+ca\le2\)
Ta có:
\(\dfrac{ab+1}{\left(a+b\right)^2}=\dfrac{1}{2}.\dfrac{2ab+2}{\left(a+b\right)^2}\ge\dfrac{1}{2}.\dfrac{2ab+a^2+b^2+c^2+ab+bc+ca}{\left(a+b\right)^2}=\dfrac{1}{2}\dfrac{\left(a+b\right)^2+\left(a+c\right)\left(b+c\right)}{\left(a+b\right)^2}\)
\(=\dfrac{1}{2}+\dfrac{1}{2}.\dfrac{\left(a+c\right)\left(b+c\right)}{\left(a+b\right)^2}\)
Tương tự và cộng lại, đồng thời đặt \(\left(a+b;b+c;c+a\right)=\left(x;y;z\right)\):
\(\Rightarrow VT\ge\dfrac{3}{2}+\dfrac{1}{2}\left(\dfrac{yz}{x^2}+\dfrac{xz}{y^2}+\dfrac{xy}{z^2}\right)\ge\dfrac{3}{2}+\dfrac{1}{2}.3\sqrt[3]{\dfrac{yz.xz.xy}{x^2y^2z^2}}=3\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{\sqrt{3}}\)
Lời giải:
Áp dụng BĐT Bunhiacopxky:
$(a^2+b^2+1)(1+1+c^2)\geq (a+b+c)^2$
$\Rightarrow \frac{1}{a^2+b^2+1}\leq \frac{c^2+2}{(a+b+c)^2}$
Hoàn toàn tương tự với các phân thức còn lại và cộng theo vế:
$\text{VT}\leq \frac{a^2+b^2+c^2+6}{(a+b+c)^2}=\frac{a^2+b^2+c^2+6}{a^2+b^2+c^2+2(ab+bc+ac)}\leq \frac{a^2+b^2+c^2+6}{a^2+b^2+c^2+2.3}=1$
Ta có đpcm.
Dấu "=" xảy ra khi $a=b=c=1$
Ta có a,b,c dương⇒\(a+b+c+ab+bc+ca=6abc\Leftrightarrow\dfrac{1}{cb}+\dfrac{1}{ac}+\dfrac{1}{ab}+\dfrac{1}{c}+\dfrac{1}{a}+\dfrac{1}{b}=6\)(1)
Đặt x=\(\dfrac{1}{a}\),y=\(\dfrac{1}{b}\),z=\(\dfrac{1}{c}\)
Vậy (1)\(\Leftrightarrow xy+xz+yz+x+y+z=6\)
Áp dụng bđt cosi ta có
\(x^2+1\ge2x\)(2)
\(y^2+1\ge2y\)(3)
\(z^2+1\ge2z\)(4)
Cộng (2),(3),(4)\(\Leftrightarrow x^2+y^2+z^2+3\ge2x+2y+2z\)(5)
Ta lại có bất đẳng thức cosi:
\(x^2+y^2\ge2xy\)(6)
\(y^2+z^2\ge2yz\)(7)
\(x^2+z^2\ge2xz\)(8)
Cộng (6),(7),(8)\(\Leftrightarrow2\left(x^2+y^2+z^2\right)\ge2xy+2xz+2yz\left(9\right)\)
Cộng (8),(9)\(\Leftrightarrow3\left(x^2+y^2+z^2\right)+3\ge2\left(x+y+z+xy+xz+yz\right)\Leftrightarrow3\left(x^2+y^2+z^2\right)+3\ge2.6\Leftrightarrow3\left(x^2+y^2+z^2\right)\ge9\Leftrightarrow x^2+y^2+z^2\ge3\Leftrightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\ge3\Rightarrowđpcm\)
\(GT\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=6\)
Ta có:
\(2\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\ge2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)\)
\(\frac{1}{a^2}+1+\frac{1}{b^2}+1+\frac{1}{c^2}+1\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
Cộng vế với vế:
\(3\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)+3\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)=12\)
\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge3\)
Với mọi số thực x, y ta luôn có:
\(\left(x-y\right)^2\ge0\Leftrightarrow x^2+y^2\ge2xy\)
Do đó:
\(a^2+1\ge2a\)
\(b^2+1\ge2b\)
\(c^2+1\ge2c\)
\(a^2+b^2\ge2ab\)
\(b^2+c^2\ge2bc\)
\(c^2+a^2\ge2ca\)
Cộng vế với vế:
\(3\left(a^2+b^2+c^2\right)+3\ge2\left(a+b+c+ab+bc+ca\right)\)
\(\Leftrightarrow3\left(a^2+b^2+c^2\right)+3\ge12\)
\(\Leftrightarrow a^2+b^2+c^2\ge3\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c=1\)